Skip to main content
Log in

Evolution of Microstructure and High-Temperature Tribological Performance of Self-Lubricating Nickel-Based Composite Tungsten Inert Gas Coatings

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study aims to assess the effect of Ag/BaF2 solid lubricant encapsulation in the nickel-based composite coatings for high-temperature tribological applications. The composite coatings (NiCrSiB/WC and NiCrSiB/WC/Ag/BaF2) have successfully been fabricated on the titanium 31 substrate by tungsten inert gas (TIG) cladding technique. The influence of the TIG processing current on the microstructure, microhardness, and fracture toughness was investigated. Mechanical characteristics of the coatings were further correlated with the microstructural morphologies. The coating fabricated at 70 A exhibited significantly higher hardness than other coatings. The tribological performances of the NiCrSiB/WC/Ag/BaF2 composite coatings were superior to those of the NiCrSiB/WC coatings at both low (200 °C) and high (600 °C) temperatures. The synergistic lubrication effect of the Ag/BaF2 solid lubricant combination provided lubrication at a wide range of temperatures. The addition of these solid lubricants in the nickel-based coating helped achieve the low coefficient of friction of 0.2 and lower wear rates. Particularly, oxide phases (such as NiO, TiO, Ni3Ti3O, and W3O) formed on the worn surface at 600 °C, and the lubricant phases (Ag, Ag2F, and Ba (TiO3)) provided excellent resistance to wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. P.F. Mendez, N. Barnes, K. Bell, S.D. Borle, S.S. Gajapathi, S.D. Guest, H. Izadi, A.K. Gol and G. Wood, Welding Processes for Wear Resistant Overlays, J. Manuf. Process., 2014, 16(1), p 4–25.

    Article  Google Scholar 

  2. D.E. Wolfe, J. Singh, J. Senderson and J. Zabinski, Laser-Clad Composite Coatings, Adv. Mater. Process., 2000, 158, p 41–44.

    CAS  Google Scholar 

  3. S. Buytoz, M. Ulutan and M.M. Yildirim, Dry Sliding Wear Behavior of TIG Welding Clad WC Composite Coatings, Appl. Surf. Sci., 2005, 252(5), p 1313–1323.

    Article  CAS  Google Scholar 

  4. T. Liyanage, G. Fisher and A.P. Gerlich, Influence of Alloy Chemistry on Microstructure and Properties in NiCrBSi Overlay Coatings Deposited by Plasma Transferred Arc Welding (PTAW), Surf. Coatings Technol., 2010, 205(3), p 759–765. https://doi.org/10.1016/j.surfcoat.2010.07.095

    Article  CAS  Google Scholar 

  5. M.R. Ramesh, S. Prakash, S.K. Nath, P.K. Sapra and B. Venkataraman, Solid Particle Erosion of HVOF Sprayed WC-Co/NiCrFeSiB Coatings, Wear, 2010, 269(3–4), p 197–205. https://doi.org/10.1016/j.wear.2010.03.019

    Article  CAS  Google Scholar 

  6. Z. Weng, A. Wang, X. Wu, Y. Wang and Z. Yang, Wear Resistance of Diode Laser-Clad Ni/WC Composite Coatings at Different Temperatures, Surf. Coat. Technol., 2016, 304, p 283–292. https://doi.org/10.1016/j.surfcoat.2016.06.081

    Article  CAS  Google Scholar 

  7. S. Zhou, Y. Huang, X. Zeng and Q. Hu, Microstructure Characteristics of Ni-Based WC Composite Coatings by Laser Induction Hybrid Rapid Cladding, Mater. Sci. Eng. A, 2008, 480(1–2), p 564–572.

    Article  Google Scholar 

  8. M. Sabzi, S.M. Dezfuli and S.M. Far, Deposition of Ni-Tungsten Carbide Nanocomposite Coating by TIG welding: Characterization and Control of Microstructure and Wear/Corrosion Responses, Ceram. Int., 2018, 44(18), p 22816–22829. https://doi.org/10.1016/j.ceramint.2018.09.073

    Article  CAS  Google Scholar 

  9. X. Luo, J. Li and G.J. Li, Effect of NiCrBSi Content on Microstructural Evolution, Cracking Susceptibility and Wear Behaviors of Laser Cladding WC/Ni-NiCrBSi Composite Coatings, J. Alloys Compd., 2015, 626, p 102–111.

    Article  CAS  Google Scholar 

  10. H. yu Wang, D. wen Zuo, Y. li Sun, F. Xu, and D. Zhang, , Microstructure of Nanometer Al2O3 Dispersion Strengthened Ni-Based High-Temperature Protective Coatings by Laser Cladding, Trans. Nonferrous Met. Soc. China, 2009, 19(3), p 586–591.

    Article  Google Scholar 

  11. V. Fallah, M. Alimardani, S.F. Corbin and A. Khajepour, Impact of Localized Surface Preheating on the Microstructure and Crack Formation in Laser Direct Deposition of Stellite 1 on AISI 4340 Steel, Appl. Surf. Sci., 2010, 257(5), p 1716–1723. https://doi.org/10.1016/j.apsusc.2010.09.003

    Article  CAS  Google Scholar 

  12. X.J. Tian, S.Q. Zhang, A. Li and H.M. Wang, Effect of Annealing Temperature on the Notch Impact Toughness of a Laser Melting Deposited Titanium Alloy Ti-4Al-1.5Mn, Mater. Sci. Eng. A, 2010, 527(7–8), p 1821–1827. https://doi.org/10.1016/j.msea.2009.11.014

    Article  CAS  Google Scholar 

  13. F. Gustavsson and S. Jacobson, Diverse Mechanisms of Friction Induced Self-Organisation into a Low-Friction Material - An Overview of WS2 Tribofilm Formation, Tribol. Int., 2016, 101, p 340–347. https://doi.org/10.1016/j.triboint.2016.04.029

    Article  CAS  Google Scholar 

  14. X. Quan, M. Hu, X. Gao, Y. Fu, L. Weng, D. Wang, D. Jiang and J. Sun, Friction and Wear Performance of Dual Lubrication Systems Combining WS2-MoS2 Composite Film and Low Volatility Oils Under Vacuum Condition, Tribol. Int., 2016, 99, p 57–66. https://doi.org/10.1016/j.triboint.2016.03.009

    Article  CAS  Google Scholar 

  15. T.F. Babuska, A. Pitenis, M. Jones, B.L. Nation, W.G. Sawyer and N. Argibay, Temperature Dependent Friction Behavior of PTFE and MoS2, Tribol. Lett., 2016, 63, p 1–12.

  16. K. Jin, Z. Qiao, S. Zhu, J. Cheng, B. Yin and J. Yang, Friction and Wear Properties and Mechanism of Bronze-Cr-Ag Composites under Dry-Sliding Conditions, Tribol. Int., 2016, 96, p 132–140. https://doi.org/10.1016/j.triboint.2015.12.031

    Article  CAS  Google Scholar 

  17. J. Li, Y. He, D. Xiong, Y. Qin, J. Chen and H. Zhu, Tribological Properties of Silver Coatings with Laser Surface Textured Nickel as Interlayer, Tribol. Int., 2016, 100, p 178–185. https://doi.org/10.1016/j.triboint.2016.01.009

    Article  CAS  Google Scholar 

  18. S.M. Aouadi, Y. Paudel, B. Luster, S. Stadler, P. Kohli, C. Muratore, C. Hager and A.A. Voevodin, Adaptive Mo 2N/MoS 2/Ag Tribological Nanocomposite Coatings for Aerospace Applications, Tribol. Lett., 2008, 29(2), p 95–103.

    Article  CAS  Google Scholar 

  19. M.E. Cura, X.W. Liu, U. Kanerva, S. Varjus, A. Kivioja, O. Söderberg and S.P. Hannula, Friction Behavior of Alumina/Molybdenum Composites and Formation of MoO3-x Phase at 400 °c, Tribol. Int., 2015, 87, p 23–31. https://doi.org/10.1016/j.triboint.2015.02.010

    Article  CAS  Google Scholar 

  20. H. Torres, T. Vuchkov, S. Slawik, C. Gachot, B. Prakash and M. Rodríguez, Ripoll, Self-Lubricating Laser Claddings for Reducing Friction and Wear from Room Temperature to 600 °C, Wear, 2018, 408–409, p 22–33. https://doi.org/10.1016/j.wear.2018.05.001

    Article  CAS  Google Scholar 

  21. C.K. Sahoo and M. Masanta, Microstructure and Tribological Behaviour of TiC-Ni-CaF2 Composite Coating Produced by TIG Cladding Process, J. Mater. Process. Technol., 2017, 243, p 229–245. https://doi.org/10.1016/j.jmatprotec.2016.12.028

    Article  CAS  Google Scholar 

  22. C. Huang, L. Du and W. Zhang, Effects of Solid Lubricant Content on the Microstructure and Properties of NiCr/Cr3C2-BaF2·CaF2 Composite Coatings, J. Alloys Compd., 2009, 479(1–2), p 777–784.

    Article  CAS  Google Scholar 

  23. M. Doddamani, M. Mathapati and M.R. Ramesh, Microstructure and Tribological Behavior of Plasma Sprayed NiCrAlY/WC-Co/Cenosphere/Solid Lubricants Composite Coatings, Surf. Coatings Technol., 2018, 354, p 92–100. https://doi.org/10.1016/j.surfcoat.2018.09.018

    Article  CAS  Google Scholar 

  24. A. Lipp, K.A. Schwetz and K. Hunold, Hexagonal Boron Nitride: Fabrication, Properties and Applications, J. Eur. Ceram. Soc., 1989, 5(1), p 3–9. https://doi.org/10.1016/0955-2219(89)90003-4

    Article  CAS  Google Scholar 

  25. Y. Kimura, T. Wakabayashi, K. Okada, T. Wada and H. Nishikawa, Boron Nitride as a Lubricant Additive, Wear, 1999, 232(2), p 199–206. https://doi.org/10.1016/S0043-1648(99)00146-5

    Article  CAS  Google Scholar 

  26. X.L. Lu, X.B. Liu, P.C. Yu, S.J. Qiao, Y.J. Zhai, M. Di Wang, Y. Chen and D. Xu, Synthesis and Characterization of Ni60-HBN High Temperature Self-Lubricating Anti-Wear Composite Coatings on Ti6Al4V Alloy by Laser Cladding, Opt. Laser Technol., 2016, 78, p 87–94. https://doi.org/10.1016/j.optlastec.2015.10.005

    Article  CAS  Google Scholar 

  27. T. Otani, Titanium Welding Technology, Nippon Steel Tech. Rep., 2007, 95, p 88–92.

    Google Scholar 

  28. A.E. Yaedu and A.S.C.M. D’Oliveira, Cobalt Based Alloy PTA Hardfacing on Different Substrate Steels, Mater. Sci. Technol., 2005, 21(4), p 459–466. https://doi.org/10.1179/174328413X13789824293380

    Article  CAS  Google Scholar 

  29. A.G. Evans and T.R. Wilshaw, Quasi-Static Solid Particle Damage in Brittle Solids—I, Obs. Anal. Implic. Acta Metall., 1976, 24(10), p 939–956. https://doi.org/10.1016/0001-6160(76)90042-0

    Article  CAS  Google Scholar 

  30. P.R. Reinaldo and A.S.C.M. D’Oliveira, NiCrSiB Coatings Deposited by Plasma Transferred Arc on Different Steel Substrates, J. Mater. Eng. Perform., 2013, 22(2), p 590–597.

    Article  CAS  Google Scholar 

  31. P. Wu, H.M. Du, X.L. Chen, Z.Q. Li, H.L. Bai and E.Y. Jiang, Influence of WC Particle Behavior on the Wear Resistance Properties of Ni-WC Composite Coatings, Wear, 2004, 257(1–2), p 142–147.

    Article  CAS  Google Scholar 

  32. S.J. Bull, A.M. Jones and A.R. McCabe, Residual Stress in Ion-Assisted Coatings, Surf. Coat. Technol., 1992, 54–55, p 173–179. https://doi.org/10.1016/S0257-8972(09)90046-9

    Article  Google Scholar 

  33. H. Yan, P. Zhang, Z. Yu, Q. Lu, S. Yang and C. Li, Microstructure and Tribological Properties of Laser-Clad Ni-Cr/TiB 2 Composite Coatings on Copper with the Addition of CaF 2, Surf. Coat. Technol., 2012, 206(19–20), p 4046–4053. https://doi.org/10.1016/j.surfcoat.2012.03.086

    Article  CAS  Google Scholar 

  34. S. Lu, J. Zhou, L. Wang and J. Liang, Effect of V and Cr Transition Layers on Microstructure and Mechanical Properties of Ni-Based Coating on Titanium Alloy Fabricated by Laser Cladding, Surf. Coat. Technol., 2021, 405, p 126734. https://doi.org/10.1016/j.surfcoat.2020.126734

    Article  CAS  Google Scholar 

  35. X. Jiao, J. Wang, C. Wang, Z. Gong, X. Pang and S.M. Xiong, Effect of Laser Scanning Speed on Microstructure and Wear Properties of T15M Cladding Coating Fabricated by Laser Cladding Technology, Opt. Lasers Eng., 2018, 110, p 163–171. https://doi.org/10.1016/j.optlaseng.2018.05.024

    Article  Google Scholar 

  36. Y. Chen, F. Lu, K. Zhang, P. Nie, S.R. Elmi Hosseini, K. Feng, Z. Li and P.K. Chu, Investigation of Dendritic Growth and Liquation Cracking in Laser Melting Deposited Inconel 718 at Different Laser Input Angles, Mater. Des., 2016, 105, p 133–141. https://doi.org/10.1016/j.matdes.2016.05.034

    Article  CAS  Google Scholar 

  37. A. Öztürk, K.V. Ezirmik, K. Kazmanli, M. Ürgen, O.L. Eryilmaz and A. Erdemir, Comparative Tribological Behaviors of TiN{single Bond}, CrN{single Bond} and MoN{single Bond}Cu Nanocomposite Coatings, Tribol. Int., 2008, 41(1), p 49–59.

    Article  Google Scholar 

  38. P.J. Blau, Elevated-Temperature Tribology of Metallic Materials, Tribol. Int., 2010, 43(7), p 1203–1208. https://doi.org/10.1016/j.triboint.2010.01.003

    Article  CAS  Google Scholar 

  39. E. Badisch, G.A. Fontalvo, M. Stoiber and C. Miterrer, Tribological Behavior of PACVD TiN Coatings in the Temperature Range up to 500 °C, Surf. Coatings Technol., 2003, 163–164, p 585–590.

    Article  Google Scholar 

  40. Q. Liu, T. He, W.Y. Guo, Y. Bai, Y.S. Ma, Z.D. Chang, H.B. Liu, Y.X. Zhou, F. Ding, Y.W. Sun, Z.F. Han and J.J. Tang, Tribological Behavior of SAPS Sprayed Al 2 O 3 -TiO 2 and NiCr-Cr 3 C 2 Coatings under Severe Load Conditions, Surf. Coatings Technol., 2018, 2019(370), p 362–373.

    Google Scholar 

  41. W. Wang, Application of a High Temperature Self-Lubricating Composite Coating on Steam Turbine Components, Surf. Coat. Technol., 2004, 177–178, p 12–17.

    Google Scholar 

  42. S. Zhu, Q. Bi, J. Yang and W. Liu, Ni 3Al Matrix Composite with Lubricious Tungstate at High Temperatures, Tribol. Lett., 2012, 45(2), p 251–255.

    Article  CAS  Google Scholar 

  43. I. Tudela, A.J. Cobley and Y. Zhang, Tribological Performance of Novel Nickel-Based Composite Coatings with Lubricant Particles, Friction, 2019, 7(2), p 169–180.

    Article  CAS  Google Scholar 

  44. X.B. Liu, X.J. Meng, H.Q. Liu, G.L. Shi, S.H. Wu, C.F. Sun, M. Di Wang and L.H. Qi, Development and Characterization of Laser Clad High Temperature Self-Lubricating Wear Resistant Composite Coatings on Ti-6Al-4V Alloy, Mater. Des., 2014, 55, p 404–409. https://doi.org/10.1016/j.matdes.2013.09.038

    Article  CAS  Google Scholar 

  45. M. Niu, Q. Bi, J. Yang and W. Liu, Tribological Performance of a Ni 3Al Matrix Self-Lubricating Composite Coating Tested from 25 to 1000°C, Surf. Coat. Technol., 2012, 206(19–20), p 3938–3943. https://doi.org/10.1016/j.surfcoat.2012.03.064

    Article  CAS  Google Scholar 

  46. M. Aristizabal, L.C. Ardila, F. Veiga, M. Arizmendi, J. Fernandez and J.M. Sánchez, Comparison of the Friction and Wear Behaviour of WC-Ni-Co-Cr and WC-Co Hardmetals in Contact with Steel at High Temperatures, Wear, 2012, 280–281, p 15–21. https://doi.org/10.1016/j.wear.2012.01.015

    Article  CAS  Google Scholar 

  47. S. Zhu, Q. Bi, J. Yang, W. Liu and Q. Xue, Ni3Al Matrix High Temperature Self-Lubricating Composites, Tribol. Int., 2011, 44(4), p 445–453. https://doi.org/10.1016/j.triboint.2010.11.016

    Article  CAS  Google Scholar 

  48. J. Zhen, F. Li, S. Zhu, J. Ma, Z. Qiao, W. Liu and J. Yang, Friction and Wear Behavior of Nickel-Alloy-Based High Temperature Self-Lubricating Composites Against Si3N4 and Inconel 718, Tribol. Int., 2014, 75, p 1–9. https://doi.org/10.1016/j.triboint.2014.03.005

    Article  CAS  Google Scholar 

  49. I.A. Inman, S.R. Rose and P.K. Datta, Studies of High Temperature Sliding Wear of Metallic Dissimilar Interfaces II: Incoloy MA956 Versus Stellite 6, Tribol. Int., 2006, 39(11), p 1361–1375.

    Article  CAS  Google Scholar 

  50. Y. Mao, J. Yan, L. Wang, W. Dong, Y. Jia, X. Hu and X. Wang, Formation and Properties of Bioactive Barium Titanate Coatings Produced by Plasma Electrolytic Oxidation, Ceram. Int., 2018, 44(11), p 12978–12986. https://doi.org/10.1016/j.ceramint.2018.04.115

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Gudala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudala, S., Ramesh, M.R. & Nallathambi, S.S. Evolution of Microstructure and High-Temperature Tribological Performance of Self-Lubricating Nickel-Based Composite Tungsten Inert Gas Coatings. J. of Materi Eng and Perform 30, 8080–8094 (2021). https://doi.org/10.1007/s11665-021-06008-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06008-4

Keywords

Navigation