Skip to main content
Log in

Laboratory Investigation of Microbiologically Influenced Corrosion of X80 Pipeline Steel by Sulfate-Reducing Bacteria

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrosion behavior of X80 pipeline steel induced by sulfate-reducing bacteria (SRB) was investigated. More corrosion pits were found in the SRB-inoculated medium than in the sterile medium. Carbon starvation tests were carried out in the SRB-inoculated culture media with 0, 10, and 100% organic carbon. Electrochemical results indicate that coupons immersed in the 0% and 10% carbon source media exhibited far more aggressive corrosion. FIB images show a loose outer corrosion layer of the coupons immersed in the 0% carbon source medium. Both metabolite and extracellular electron transfer worked as the corrosion mechanism in this study, while the predominant mechanism in the carbon source reduced media was extracellular electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Enning and J. Garrelfs, Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem, Appl. Environ. Microbiol., 2014, 80, p 1226–1236.

    Article  CAS  Google Scholar 

  2. A.M. Olszewski, Avoidable MIC-Related Failure, J. Fail. Anal. Prev., 2017, 7, p 239–246.

    Article  Google Scholar 

  3. A. Vigneron, I.M. Head and N. Tsesmetzis, Damage to Offshore Production Facilities by Corrosive Microbial Biofilms, Appl. Microbiol. Biotechnol., 2018, 102, p 2525–2533.

    Article  CAS  Google Scholar 

  4. P.J. Antony, R.S. Raman, R. Raman and P. Kumar, Role of Microstructure on Corrosion of Duplex Stainless Steel in Presence of Bacterial Activity, Corros. Sci., 2010, 52, p 1404–1412.

    Article  CAS  Google Scholar 

  5. B. Liu, Z. Li, X. Yang, C. Du and X. Li, Microbiologically Influenced Corrosion of X80 Pipeline Steel by Nitrate Reducing Bacteria in Artificial Beijing soil, Bioelectrochemistry, 2020, 135, p 107551.

    Article  CAS  Google Scholar 

  6. R. Javaherdashti, Microbiologically Influenced Corrosion (MIC), 2nd ed. Springer, Cham, 2017, p 29–79

    Book  Google Scholar 

  7. Y. Wang, W. Zhao, H. Ai, X. Zhou and T. Zhang, Effects of Strain on the Corrosion Behaviour of X80 Steel, Corros. Sci., 2011, 53, p 2761–2766.

    Article  CAS  Google Scholar 

  8. D. Xu and T. Gu, Carbon Source Starvation Triggered more Aggressive Corrosion Against Carbon Steel by the Desulfovibrio vulgaris Biofilm, Int. Biodeterior. Biodegrad., 2014, 91, p 74–81.

    Article  CAS  Google Scholar 

  9. G. Muyzer and A.J. Stams, The Ecology and Biotechnology of Sulphate-Reducing Bacteria, Nat. Rev. Microbiol., 2008, 6, p 441–454.

    Article  CAS  Google Scholar 

  10. J. Wu, D. Zhang, P. Wang, Y. Cheng, S. Sun, Y. Sun and S. Chen, The Influence of Desulfovibrio sp. and Pseudoalteromonas sp. on the Corrosion of Q235 Carbon Steel in Natural Seawater, Corros. Sci., 2016, 112, p 552–562.

    Article  CAS  Google Scholar 

  11. W. Dou, J. Liu, W. Cai, D. Wang, R. Jia, S. Chen and T. Gu, Electrochemical Investigation of Increased Carbon Steel Corrosion via Extracellular Electron Transfer by a Sulfate Reducing Bacterium Under Carbon Source Starvation, Corros. Sci., 2019, 150, p 258–267.

    Article  CAS  Google Scholar 

  12. Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang and T. Gu, Anaerobic Microbiologically Influenced Corrosion Mechanisms Interpreted Using Bioenergetics and Bioelectrochemistry: A Review, J. Mater. Sci. Technol., 2018, 34, p 1713–1718.

    Article  Google Scholar 

  13. T. Gu, R. Jia, T. Unsal and D. Xu, Toward a Better Understanding of Microbiologically Influenced Corrosion Caused by Sulfate Reducing Bacteria, J. Mater. Sci. Technol., 2019, 35, p 631–636.

    Article  Google Scholar 

  14. R. Jia, J.L. Tan, P. Jin, D.J. Blackwood, D. Xu and T. Gu, Effects of Biogenic H2S on the Microbiologically Influenced Corrosion of C1018 Carbon Steel by Sulfate Reducing Desulfovibrio vulgaris Biofilm, Corros. Sci., 2018, 130, p 1–11.

    Article  CAS  Google Scholar 

  15. H.T. Dinh, J. Kuever, M. Mußmann, A.W. Hassel, M. Stratmann and F. Widdel, Iron Corrosion by Novel Anaerobic Microorganisms, Nature, 2014, 427, p 829–832.

    Article  CAS  Google Scholar 

  16. D.T. Hang, Microbiological Study of the Anaerobic Corrosion of Iron, in Trabajo de Grado para el titulo de Doctor en Ciencias Naturales, Universidad de Bremen, Alemania, 2003, p 56–71.

  17. T. Gu, K. Zhao, S. Nesic, A New Mechanistic Model for MIC Based on a Biocatalytic Cathodic Sulfate Reduction Theory, in Corrosion Conference and Expo, NACE, Atlanta, 2009, p 1–12.

  18. R. Jia, D. Yang, J. Xu, D. Xu and T. Gu, Microbiologically Influenced Corrosion of C1018 Carbon Steel by Nitrate Reducing Pseudomonas aeruginosa Biofilm Under Organic Carbon Starvation, Corros. Sci., 2017, 127, p 1–9.

    Article  CAS  Google Scholar 

  19. L.Y. Cui, Z.Y. Liu, D.K. Xu, P. Hu, J.M. Shao, C.W. Du and X.G. Li, The Study of Microbiologically Influenced Corrosion of 2205 Duplex Stainless Steel Based on High-Resolution Characterization, Corros. Sci., 2020, 30, p 108842.

    Article  CAS  Google Scholar 

  20. X. Yang, J. Shao, Z. Liu, D. Zhang, L. Cui, C. Du and X. Li, Stress-Assisted Microbiologically Influenced Corrosion Mechanism of 2205 Duplex Stainless Steel Caused by Sulfate-Reducing Bacteria, Corros. Sci., 2020, 20, p 108746.

    Article  CAS  Google Scholar 

  21. Y. Chen, Q. Tang, J.M. Senko, G. Cheng, B.M.Z. Newby, H. Castaneda and L.K. Ju, Long-Term Survival of Desulfovibrio vulgaris on Carbon Steel and Associated Pitting Corrosion, Corros. Sci., 2015, 90, p 89–100.

    Article  CAS  Google Scholar 

  22. P. Zhang, D. Xu, Y. Li, K. Yang and T. Gu, Electron Mediators Accelerate the Microbiologically Influenced Corrosion of 304 Stainless Steel by the Desulfovibrio vulgaris Biofilm, Bioelectrochemistry, 2015, 101, p 14–21.

    Article  CAS  Google Scholar 

  23. H. Liu, T. Gu, G. Zhang, H. Liu and Y.F. Cheng, Corrosion of X80 Pipeline Steel Under Sulfate-Reducing Bacterium Biofilms in Simulated CO2-Saturated Oilfield Produced Water with Carbon Source Starvation, Corros. Sci., 2018, 136, p 47–59.

    Article  CAS  Google Scholar 

  24. C.B. Walker, Z. He, Z.K. Yang, J.A. Ringbauer, Q. He, J. Zhou, G. Voordouw, J.D. Wall, A.P. Arkin, T.C. Hazen and S. Stolyar, The Electron Transfer System of Syntrophically Grown Desulfovibrio vulgaris, J. Bacteriol., 2019, 191, p 5793–5801.

    Article  CAS  Google Scholar 

  25. G. Reguera, K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen and D.R. Lovley, Extracellular Electron Transfer via Microbial Nanowires, Nature, 2005, 435, p 1098–1101.

    Article  CAS  Google Scholar 

  26. D. Xu, Y. Li, F. Song and T. Gu, Laboratory Investigation of Microbiologically Influenced Corrosion of C1018 Carbon Steel by Nitrate Reducing Bacterium Bacillus Licheniformis, Corros. Sci., 2013, 77, p 385–390.

    Article  CAS  Google Scholar 

  27. L. Huang, Y. Huang, Y. Lou, H. Qian, D. Xu, L. Ma, C. Jiang and D. Zhang, Pyocyanin-Modifying Genes phzM and phzS Regulated the Extracellular Electron Transfer in Microbiologically-Influenced Corrosion of X80 Carbon Steel by Pseudomonas aeruginosa, Corros. Sci., 2020, 164, p 108355.

    Article  CAS  Google Scholar 

  28. P. Marcus and J.M. Grimal, The Anodic Dissolution and Passivation of NiCrFe Alloys Studied by ESCA, Corros. Sci., 1992, 33, p 805–814.

    Article  CAS  Google Scholar 

  29. M. Oku and K. Hirokawa, X-Ray Photoelectron Spectroscopy of Co3O4, Fe3O4, Mn3O4, and Related Compounds, J. Electron. Spectrosc. Relat. Phenom., 1976, 8, p 475–481.

    Article  CAS  Google Scholar 

  30. T. Wu, J. Xu, M. Yan, C. Sun, C. Yu and W. Ke, Synergistic Effect of Sulfate-Reducing Bacteria and Elastic Stress on Corrosion of X80 Steel in Soil Solution, Corros. Sci., 2014, 83, p 38–47.

    Article  CAS  Google Scholar 

  31. J. Wang, B. Hou, J. Xiang, X. Chen, T. Gu and H. Liu, The Performance and Mechanism of Bifunctional Biocide Sodium Pyrithione Against Sulfate Reducing Bacteria in X80 Carbon Steel Corrosion, Corros. Sci., 2019, 150, p 296–308.

    Article  CAS  Google Scholar 

  32. H. Konno, K. Sasaki, M. Tsunekawa, T. Takamori and R. Furuichi, X-Ray Photoelectron Spectroscopic Analysis of Surface Products on Pyrite Formed by Bacterial Leaching, Bunseki Kagaku, 1991, 40, p 609–616.

    Article  CAS  Google Scholar 

  33. V.I. Nefedov, Y.V. Salyn, G. Leonhardt and R. Scheibe, A Comparison of Different Spectrometers and Charge Corrections Used in X-Ray Photoelectron Spectroscopy, J. Electron. Spectrosc. Relat. Phenom., 1977, 10, p 121–124.

    Article  CAS  Google Scholar 

  34. B.J. Tan, K.J. Klabunde and P.M. Sherwood, X-Ray Photoelectron Spectroscopy Studies of Solvated Metal Atom Dispersed Catalysts. Monometallic Iron and Bimetallic Iron-Cobalt Particles on Alumina, Chem. Mater., 1990, 2, p 186–191.

    Article  CAS  Google Scholar 

  35. B.R. Strohmeier and D.M. Hercules, Surface Spectroscopic Characterization of Manganese/Aluminum Oxide Catalysts, J. Phys. Chem., 1984, 88, p 4922–4929.

    Article  CAS  Google Scholar 

  36. S. Karthe, R. Szargan and E. Suoninen, Oxidation of Pyrite Surfaces: A Photoelectron Spectroscopic Study, Appl. Surf. Sci., 1993, 72, p 157–170.

    Article  CAS  Google Scholar 

  37. J.M. Thomas, I. Adams, R.H. Williams and M. Barber, Valence Band Structures and Core-Electron Energy Levels in the Monochalcogenides of Gallium. Photoelectron SPECTROSCOPIC study, J. Chem. Soc. Faraday Trans., 1972, 2(68), p 755–764.

    Article  Google Scholar 

  38. T. Wu, J. Xu, C. Sun, M. Yan, C. Yu and W. Ke, Microbiological Corrosion of Pipeline Steel Under Yield Stress in Soil Environment, Corros. Sci., 2014, 88, p 291–305.

    Article  CAS  Google Scholar 

  39. M. Stern and A.L. Geary, Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves, J. Electrochem. Soc., 1957, 104, p 56–63.

    Article  CAS  Google Scholar 

  40. T. Wu, W.C. Ding, D.C. Zeng, C.F. Xu, M.C. Yan, J. Xu, C.K. Yu and C. Sun, Microbiologically Induced Corrosion of X80 Pipeline Steel in an Acid Soil Solution: (I) Electrochemical Analysis, J. Chin. Soc. Corros. Prot., 2014, 34, p 346–352.

    CAS  Google Scholar 

  41. V. Margaria, T. Tommasi, S. Pentassuglia, V. Agostino, A. Sacco, C. Armato, A. Chiodoni, T. Schilirò and M. Quaglio, Effects of pH Variations on Anodic Marine Consortia in a Dual Chamber Microbial Fuel Cell, Int. J. Hydrog. Energy, 2017, 42, p 1820–1829.

    Article  CAS  Google Scholar 

  42. D. Enning, H. Venzlaff, J. Garrelfs, H.T. Dinh, V. Meyer, K. Mayrhofer, A.W. Hassel, M. Stratmann and F. Widdel, Marine Sulfate-Reducing Bacteria Cause Serious Corrosion of Iron Under Electroconductive Biogenic Mineral Crust, Environ. Microbiol., 2012, 14, p 1772–1787.

    Article  CAS  Google Scholar 

  43. K. Xiao, Z. Li, J. Song, Z. Bai, W. Xue, J. Wu, C. Dong, Effect of Concentrations of Fe2+ and Fe3+ on the Corrosion Behavior of Carbon Steel in Cl and SO42− Aqueous Environments. Met. Mater. Int., 2020. https://doi.org/10.1007/s12540-019-00590-y.

  44. L. Yu, M. Yan, J. Ma, M. Wu, Y. Shu, C. Sun, J. Xu and C. Yu, Sulfate Reducing Bacteria Corrosion of Pipeline Steel in Fe-Rich Red Soil, Acta Metall. Sin., 2017, 53, p 1568–1578.

    Google Scholar 

  45. T. Gu, Theoretical Modeling of the Possibility of Acid Producing Bacteria Causing Fast Pitting Biocorrosion, J. Microb. Biochem. Technol., 2014, 6, p 68–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Key R&D Program of China (2017YFB0304701), Open Fund of Shandong Key Laboratory of Corrosion Science (No. KLCS201909) and Fundamental Research Funds for the Central Universities (No. FRF-NP-20-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Liu, Z., Hu, P. et al. Laboratory Investigation of Microbiologically Influenced Corrosion of X80 Pipeline Steel by Sulfate-Reducing Bacteria. J. of Materi Eng and Perform 30, 7584–7596 (2021). https://doi.org/10.1007/s11665-021-05974-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05974-z

Keywords

Navigation