Skip to main content
Log in

A Review on the Effect of Impact Toughness and Fracture Toughness on Impact-Abrasion Wear

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the mining and related industries, the abrasion and impact phenomena operate among the chain of ore processing. While abrasion-corrosion and/or erosion-corrosion phenomena in ore processing are relatively well understood, the concurrent operation of abrasion and impact wear is not well comprehended. The distinctive mechanisms and features of abrasion-impact wear and the synergy, if one exists, between impact and abrasion have not been either explored or discussed systematically in the literature. Furthermore, their economic impact on mining cannot be underestimated especially as past research focused mainly on improving the hardness even at the expense of toughness. Understanding the complex relation between abrasion and impact can efficiently mitigate countless wear problems in mining. The purpose of this paper is to discuss critically the topic, stimulating new questions, and propose some general ideas that might be used as basic guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Copyright 2017, with permission from Elsevier

Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

K :

Stress intensity factor

\(K_{{{\text{IC}}}}\) :

Plane strain critical linear elastic fracture toughness as per ASTM E-399 standard (static-low loading rate)

\(K_{{{\text{Id}}}}\) :

Linear elastic fracture toughness under dynamic loading (dynamic-high loading rate)

CTOD or δ :

Crack-tip opening displacement

R-curves:

Crack extension resistance curves

J :

J-Integral

WCI:

Chromium white cast iron

CVN:

Charpy V-Notch

References

  1. Ma. Qian and W. Chaochang, Impact-Abrasion Behavior of Low Alloy White Cast Irons, Wear, 1997, 209(1), p 308–315.

    Article  CAS  Google Scholar 

  2. J.D. Gates, G.J. Gore, M.J.P. Hermand, M.J.P. Guerineau, P.B. Martin and J. Saad, The Meaning of High Stress Abrasion and Its Application in White Cast Irons, Wear, 2007, 263(1), p 6–35.

    Article  CAS  Google Scholar 

  3. N. Ojala, K. Valtonen, V. Heino, M. Kallio, J. Aaltonen, P. Siitonen and V.-T. Kuokkala, Effects of Composition and Microstructure on the Abrasive Wear Performance of Quenched Wear Resistant Steels, Wear, 2014, 317(1), p 225–232.

    Article  CAS  Google Scholar 

  4. D.L. Albright and D.J. Dunn, Wear Behavior of Iron and Steel Castings for the Mining Industry, JOM, 1983, 35(11), p 23–29.

    Article  CAS  Google Scholar 

  5. A. Kootsookos, J.D. Gates and R.A. Eaton, Development of a White Cast Iron of Fracture Toughness 40 MPa√m, Cast Met., 1995, 7(4), p 239–246.

    Article  CAS  Google Scholar 

  6. D. Medlin and H. Kuhn, Fracture Toughness and Fracture Mechanics, Mechanical Testing and Evaluation, Vol 8, ASM Handbook. H. Kuhn et al., Ed., ASM International, Novelty, 2000, p 563–575

    Google Scholar 

  7. S. Zhang, D. Sun, Fu. Yongqing and D. Hejun, Toughness Measurement of Thin Films: A Critical Review, Surf. Coat. Technol., 2005, 198(1), p 74–84.

    Article  CAS  Google Scholar 

  8. ASTM International. E399-19 Standard Test Method for Linear-Elastic Plane Strain Fracture Toughness KIC of Metallic Materials 2019. West Conshohocken, PA Doi: https://doi.org/10.1520/E0399-19.

  9. ISO. 12135:2016(E) Metallic Materials–Unified Method of Test for the Determination of Quasistatic Fracture Toughness 2007. CH-1214 Vernier, Geneva, Switzerland.

  10. ASTM International. E1820 Standard Test Method for Measurement of Fracture Toughness 2020. West Conshohocken, PA Doi: https://doi.org/10.1520/E1820-20.

  11. X.-K. Zhu and J.A. Joyce, Review of Fracture Toughness (G, K, J, CTOD, CTOA) Testing and Standardization, Eng. Fract. Mech., 2012, 85, p 1–46.

    Article  Google Scholar 

  12. T. Noguchi, K. Shimizu, N. Takahashi and N. Takashi, Strength Evaluation of Cast Iron Grinding Balls by Repeated Drop Tests, Wear, 1999, 231(2), p 301–309.

    Article  CAS  Google Scholar 

  13. S.T. Rolfe and J.M. Barsom, Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics, 3rd ed. ASTM International, Novelty, 1999.

    Google Scholar 

  14. C.-H. Hsu, S.-C. Lee, Y.-H. Shy and W.-T. Chiou, Relationship Between Dynamic and Static Toughness of Flake and Compacted Graphite Cast Irons, Mater. Sci. Eng. A, 2000, 282(1), p 115–122.

    Article  Google Scholar 

  15. A. Rossoll, C. Berdin and C. Prioul, Determination of the Fracture Toughness of a Low Alloy Steel by the Instrumented Charpy Impact Test, Int. J. Fract., 2002, 115(3), p 205–226.

    Article  CAS  Google Scholar 

  16. M.J. Barsom, Development of the AASHTO Fracture-Toughness Requirements for Bridge Steels, Eng. Fract. Mech., 1975, 7(3), p 605–618.

    Article  CAS  Google Scholar 

  17. H.F. Li, Q.Q. Duan, P. Zhang, X.H. Zhou, B. Wang and Z.F. Zhang, The Quantitative Relationship Between Fracture Toughness and Impact Toughness in High-Strength Steels, Eng. Fract. Mech., 2019, 211, p 362–370.

    Article  Google Scholar 

  18. Y.J. Chao, J.D. Ward and R.G. Sands, Charpy Impact Energy, Fracture Toughness and Ductile–Brittle Transition Temperature of Dual-Phase 590 Steel, Mater. Des., 2007, 28(2), p 551–557.

    Article  CAS  Google Scholar 

  19. X. Wen, M. Wan, C. Huang, Y. Tan, M. Lei, Y. Liang and X. Cai, Effect of Microstructure on Tensile Properties, Impact Toughness and Fracture Toughness of TC21 Alloy, Mater. Des., 2019, 180, p 107898.

    Article  CAS  Google Scholar 

  20. R.O. Ritchie and R.M. Horn, Further Considerations on the Inconsistency in Toughness Evaluation of AISI 4340 Steel Austenitized at Increasing Temperatures, Metall. Trans. A, 1978, 9(3), p 331–341.

    Article  Google Scholar 

  21. H. Kim, M. Kang, H.J. Jung, H.S. Kim, C.M. Bae and S. Lee, Mechanisms of Toughness Improvement in Charpy Impact And Fracture Toughness Tests of Non-Heat-Treating Cold-Drawn Steel Bar, Mater. Sci. Eng. A, 2013, 571, p 38–48.

    Article  CAS  Google Scholar 

  22. Q. Wang, L. Xiao, W. Liu, H. Zhang, W. Cui, Z. Li and W. Guohua, Effect of Heat Treatment on Tensile Properties, Impact Toughness and Plane-Strain Fracture Toughness of Sand-Cast Mg-6Gd-3Y-05Zr Magnesium Alloy, Mater. Sci. Eng. A, 2017, 705, p 402–410.

    Article  CAS  Google Scholar 

  23. H.-F. Li, Q.-Q. Duan, P. Zhang and Z.-F. Zhang, The Relationship Between Strength and Toughness in Tempered Steel: Trade-Off or Invariable?, Adv. Eng. Mater., 2019, 21(4), p 1801116.

    Article  CAS  Google Scholar 

  24. R. Tomášek, V. Mareš, L. Horsák, Fracture Toughness and Charpy Impact Test of MIM Steels and Correlation of Results by KIC-CVN Relationships, in Key Engineering Materials. 2019. Trans Tech Publ.

  25. T.M.F. Ronald, J.A. Hall and C.M. Pierce, Usefulness of Precracked Charpy Specimens for Fracture Toughness Screening Tests of Titanium Alloys, Metall. Mater. Trans. B, 1972, 3(4), p 813–818.

    Article  CAS  Google Scholar 

  26. S. Zhang, S. Zhou, M. Li and F. Biwei, Calculation and Comparison on Fracture Toughness of Specific Reliability Between ASTM and ISO Standards, Mater. Res. Express, 2020 https://doi.org/10.1088/2053-1591/ab6c21

    Article  Google Scholar 

  27. J.R. Rice and G.F. Rosengren, Plane Strain Deformation Near a Crack Tip in a Power-Law Hardening Material, J. Mech. Phys. Solids, 1968, 16(1), p 1–12.

    Article  Google Scholar 

  28. M.-L. Zhu and F.-Z. Xuan, Correlation Between Microstructure, Hardness and Strength in HAZ of Dissimilar Welds of Rotor Steels, Mater. Sci. Eng. A, 2010, 527(16), p 4035–4042.

    Article  CAS  Google Scholar 

  29. K.-H. Zum Gahr and W.G. Scholz, Fracture Toughness of White Cast Irons, JOM, 1980, 32(10), p 38–44.

    Article  Google Scholar 

  30. M.-X. Zhang and P.M. Kelly, Stress-Induced Martensitic Transformation and Impact Toughness of Cast Irons and High-Carbon Fe-Ni-C Steel, Metall. Mater. Trans. A., 2001, 32(11), p 2695–2708.

    Article  Google Scholar 

  31. O.A. Zambrano, Stacking Fault Energy Maps of Fe-Mn-Al-C-Si Steels: Effect of Temperature, Grain Size, and Variations in Compositions, J. Eng. Mater. Technol. , 2016 https://doi.org/10.1115/14033632

    Article  Google Scholar 

  32. A. Kootsookos and J.D. Gates, The Role of Secondary Carbide Precipitation on the Fracture Toughness of a Reduced Carbon White Iron, Mater. Sci. Eng. A, 2008, 490(1), p 313–318.

    Article  CAS  Google Scholar 

  33. I.R. Sare and B.K. Arnold, The Influence of Heat Treatment on the High-Stress Abrasion Resistance and Fracture Toughness of Alloy White Cast Irons, Metall. Mater. Trans. A., 1995, 26(7), p 1785–1793.

    Article  Google Scholar 

  34. W.L. Bradley and M.N. Srinivasan, Fracture and Fracture Toughness of Cast Irons, Int. Mater. Rev., 1990, 35(1), p 129–161.

    Article  CAS  Google Scholar 

  35. S.B. Biner, The Role of Eutectic Carbide Morphology on the Fracture Behaviour of High-Chromium Cast Irons—I. Austenitic Alloys, Can. Metall. Q., 1985, 24(2), p 155–162.

    Article  CAS  Google Scholar 

  36. S.B. Biner, The Role of Eutectic Carbide Morphology on the Fracture Behaviour of High-Chromium Cast Irons—II. Martensitic Alloys , Can. Metall. Q., 1985, 24(2), p 163–167.

    Article  CAS  Google Scholar 

  37. M. Filipovic, Z. Kamberovic, M. Korac and M. Gavrilovski, Microstructure and Mechanical Properties of Fe-Cr-C-Nb White Cast Irons, Mater. Des., 2013, 47, p 41–48.

    Article  CAS  Google Scholar 

  38. Y. Uematsu, K. Tokaji, T. Horie and K. Nishigaki, Fracture Toughness and Fatigue Crack Propagation in Cast Irons with Spheroidal Vanadium Carbides Dispersed Within Martensitic Matrix Microstructure, Mater. Sci. Eng. A, 2007, 471(1), p 15–21.

    Article  CAS  Google Scholar 

  39. L. Hao, C. Ouyang, X. Yan, J. Wang, G. Hua, R. Chung and D.Y. Li, Potential Application of Electron Work Function in Analyzing Fracture Toughness of Materials, J. Mater. Sci. Technol., 2017, 33(10), p 1128–1133.

    Article  Google Scholar 

  40. J.J. Coronado, Effect of (Fe, Cr)7C3 Carbide Orientation on Abrasion Wear Resistance and Fracture Toughness, Wear, 2011, 270(3), p 287–293.

    Article  CAS  Google Scholar 

  41. A.H. Elsayed, M.M. Megahed, A.A. Sadek and K.M. Abouelela, Fracture Toughness Characterization of Austempered Ductile Iron Produced Using Both Conventional and Two-Step Austempering Processes, Mater. Des., 2009, 30(6), p 1866–1877.

    Article  CAS  Google Scholar 

  42. G. Toktaş and A. Toktaş, Estimating Fracture Toughness of Various Matrix Structured Ductile Iron Using Circumferentially Notched Tensile Bars, Eng. Fract. Mech., 2018, 194, p 1–8.

    Article  Google Scholar 

  43. A. Hohenwarter, A. Taylor, R. Stock and R. Pippan, Effect of Large Shear Deformations on the Fracture Behavior of a Fully Pearlitic Steel, Metall. Mater. Trans. A, 2011, 42(6), p 1609–1618.

    Article  CAS  Google Scholar 

  44. A.R. Chintha, K. Valtonen, V.T. Kuokkala, S. Kundu, M.J. Peet and H.K.D.H. Bhadeshia, Role of Fracture Toughness in Impact-Abrasion Wear, Wear, 2019, 428–429, p 430–437.

    Article  CAS  Google Scholar 

  45. A.K. Saxena, A. Kumar, M. Herbig, S. Brinckmann, G. Dehm and C. Kirchlechner, Micro Fracture Investigations of White Etching Layers, Mater. Des., 2019, 180, p 107892.

    Article  CAS  Google Scholar 

  46. M.N. Yoozbashi, S. Yazdani and T.S. Wang, Design of a New Nanostructured, High-Si Bainitic Steel with Lower Cost Production, Mater. Des., 2011, 32(6), p 3248–3253.

    Article  CAS  Google Scholar 

  47. P. Valizadeh Moghaddam, M. Rinaudo, J. Hardell, E. Vuorinen and B. Prakash, Influence of Fracture Toughness on Two-Body Abrasive Wear of Nanostructured Carbide-Free Bainitic Steels, Wear, 2020, 460–461, p 203484.

    Article  CAS  Google Scholar 

  48. A. Hohenwarter and R. Pippan, Fracture and Fracture Toughness of Nanopolycrystalline Metals Produced by Severe Plastic Deformation, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2015, 373(2038), p 20140366.

    Article  CAS  Google Scholar 

  49. O.A. Zambrano, A General Perspective of Fe-Mn-Al-C Steels, J. Mater. Sci., 2018, 53(20), p 14003–14062.

    Article  CAS  Google Scholar 

  50. L. Liu, Y. Qin, Z. Wang, J. Ell, M.X. Huang and R.O. Ritchie, Making Ultrastrong Steel Tough by Grain-Boundary Delamination, Science, 2020 https://doi.org/10.1126/science.aba9413

    Article  Google Scholar 

  51. S. Ge, Q. Wang and J. Wang, The Impact Wear-Resistance Enhancement Mechanism of Medium Manganese Steel and Its Applications in Mining Machines, Wear, 2017, 376–377, p 1097–1104.

    Article  CAS  Google Scholar 

  52. H.K.D.H. Bhadeshia, The First Bulk Nanostructured Metal, Sci. Technol. Adv. Mater., 2013, 14(1), p 014202.

    Article  CAS  Google Scholar 

  53. L.C. Chang, Microstructures and Reaction Kinetics of Bainite Transformation in Si-Rich Steels, Mater. Sci. Eng. A, 2004, 368(1), p 175–182.

    Article  CAS  Google Scholar 

  54. I. Konyashin, M. Antonov and B. Ries, Wear Behaviour and Wear Mechanisms of Different Hardmetal Grades in Comparison With Polycrystalline Diamond in a New Impact-Abrasion Test, Int. J. Refract. Met. Hard Mater., 2020, 92, p 105286.

    Article  CAS  Google Scholar 

  55. A. Vornberger, J. Pötschke, T. Gestrich, M. Herrmann and A. Michaelis, Influence of Microstructure on Hardness and Thermal Conductivity of Hardmetals, Int. J. Refract. Met. Hard Mater., 2020, 88, p 105170.

    Article  CAS  Google Scholar 

  56. G.-S. Zhang, J.-D. Xing and Y.-M. Gao, Impact Wear Resistance of WC/Hadfield Steel Composite and Its Interfacial Characteristics, Wear, 2006, 260(7), p 728–734.

    Article  CAS  Google Scholar 

  57. V. Jankauskas, M. Antonov, E. Katinas and I. Gedzevicius, Effect of Alloying Additives on Impact-Abrasive Wear of Manual Arc Welded Hadfield Steel Hardfacings, J. Frict. Wear, 2016, 37(2), p 170–178.

    Article  Google Scholar 

  58. J.J. Coronado and A. Sinatora, Effect of Abrasive Size on Wear of Metallic Materials and Its Relationship with Microchips Morphology and Wear Micromechanisms: Part 1, Wear, 2011, 271(9), p 1794–1803.

    Article  CAS  Google Scholar 

  59. K.-H. Zum Gahr, Microstructure and Wear of Materials, Vol 10 Elsevier, Amsredam, 1987.

    Google Scholar 

  60. K. Hokkirigawa and K. Kato, An Experimental and Theoretical Investigation of Ploughing, Cutting and Wedge Formation During Abrasive Wear, Tribol. Int., 1988, 21(1), p 51–57.

    Article  CAS  Google Scholar 

  61. E. Hornbogen, The Role of Fracture Toughness in the Wear of Metals, Wear, 1975, 33(2), p 251–259.

    Article  CAS  Google Scholar 

  62. A.G. Atkins, Toughness in Wear and Grinding, Wear, 1980, 61(1), p 183–190.

    Article  Google Scholar 

  63. J.R. Fleming and N.P. Suh, The Relationship Between Crack Propagation Rates and Wear Rates, Wear, 1977, 44(1), p 57–64.

    Article  Google Scholar 

  64. D.A. Hills and D.W. Ashelby, On the Application of Fracture Mechanics to Wear, Wear, 1979, 54(2), p 321–330.

    Article  Google Scholar 

  65. T. Atkins, The Importance of Toughness in Manufacturing, J. Mater. Process. Technol., 2018, 261, p 280–294.

    Article  Google Scholar 

  66. A.G. Atkins and J.H. Liu, Toughness and the Transition Between Cutting and Rubbing in Abrasive Contacts, Wear, 2007, 262(1), p 146–159.

    Article  CAS  Google Scholar 

  67. I. Sevim and I.B. Eryurek, Effect of Fracture Toughness on Abrasive Wear Resistance of Steels, Mater. Des., 2006, 27(10), p 911–919.

    Article  CAS  Google Scholar 

  68. W.J. Salesky and G. Thomas, Medium Carbon Steel Alloy Design for Wear Applications, Wear, 1982, 75(1), p 21–40.

    Article  CAS  Google Scholar 

  69. K.-H. Zum Gahr and D.V. Doane, Optimizing Fracture Toughness and Abrasion Resistance In White Cast Irons, Metall. Trans. A, 1980, 11(4), p 613–620.

    Article  Google Scholar 

  70. M. Radulovic, M. Fiset, K. Peev and M. Tomovic, The Influence of Vanadium on Fracture Toughness and Abrasion Resistance in High Chromium White Cast Irons, J. Mater. Sci., 1994, 29(19), p 5085–5094.

    Article  CAS  Google Scholar 

  71. M. Filipovic, Z. Kamberovic, M. Korac and M. Gavrilovski, Correlation of Microstructure with the Wear Resistance and Fracture Toughness of White Cast Iron Alloys, Met. Mater. Int., 2013, 19(3), p 473–481.

    Article  CAS  Google Scholar 

  72. J.D. Gates and R. Eaton, Real Life Wear Processes, Mater. Forum, 1993, 17(4), p 369–381.

    CAS  Google Scholar 

  73. G.J. Gore and J.D. Gates, Effect of Hardness on Three Very Different Forms of Wear, Wear, 1997, 203–204, p 544–563.

    Article  Google Scholar 

  74. G.J. Gore and J.D. Gates, Impact-Abrasion: Has Its Time Come... and Gone, Mater. Aust., 2000, 32, p 13–15.

    Google Scholar 

  75. O.R. Ritchie, The Conflicts Between Strength and Toughness, Nat. Mater., 2011, 10(11), p 817–822.

    Article  CAS  Google Scholar 

  76. N.-V. Nguyen, T.-H. Pham and S.-E. Kim, Strain Rate-Dependent Behaviors of Mechanical Properties of Structural Steel Investigated Using Indentation and Finite Element Analysis, Mech. Mater., 2019, 137, p 103089.

    Article  Google Scholar 

  77. M. Hassani, D. Veysset, K.A. Nelson and C.A. Schuh, Material Hardness at Strain Rates Beyond 106 s−1 Via High Velocity Microparticle Impact Indentation, Scr. Mater., 2020, 177, p 198–202.

    Article  CAS  Google Scholar 

  78. Z. Wang, Z.-B. Cai, Z.-Q. Chen, Y. Sun and M.-H. Zhu, Low-Velocity Impact Wear Behavior of Ball-to-Flat Contact Under Constant Kinetic Energy, J. Mater. Eng. Perform., 2017, 26(11), p 5669–5679.

    Article  CAS  Google Scholar 

  79. H.A. Sherif and F.A. Almufadi, Analysis of Elastic and Plastic Impact Models, Wear, 2018, 412–413, p 127–135.

    Article  CAS  Google Scholar 

  80. O. Haiko, K. Valtonen, A. Kaijalainen, S. Uusikallio, J. Hannula, T. Liimatainen and J. Kömi, Effect of Tempering on the Impact-Abrasive and Abrasive Wear Resistance of Ultra-High Strength Steels, Wear, 2019, 440–441, p 203098.

    Article  CAS  Google Scholar 

  81. J.H. Tylczak, J.A. Hawk and R.D. Wilson, A Comparison of Laboratory Abrasion and Field Wear Results, Wear, 1999, 225–229, p 1059–1069.

    Article  Google Scholar 

  82. I.R. Sare, B.K. Arnold, G.A. Dunlop and P.G. Lloyd, Repeated Impact-Abrasion Testing of Alloy White Cast Irons, Wear, 1993, 162–164, p 790–801.

    Article  Google Scholar 

  83. A. Sundström, J. Rendón and M. Olsson, Wear Behaviour of Some Low Alloyed Steels Under Combined Impact/Abrasion Contact Conditions, Wear, 2001, 250(1), p 744–754.

    Article  Google Scholar 

  84. M. Varga, High Temperature Abrasive Wear of Metallic Materials, Wear, 2017, 376–377, p 443–451.

    Article  CAS  Google Scholar 

  85. V. Ratia, K. Valtonen and V.-T. Kuokkala, Impact-Abrasion Wear of Wear-Resistant Steels at Perpendicular and Tilted Angles, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2013, 227(8), p 868–877.

    Article  CAS  Google Scholar 

  86. V. Ratia, I. Miettunen and V.-T. Kuokkala, Surface Deformation of Steels in Impact-Abrasion: The Effect of Sample Angle and Test Duration, Wear, 2013, 301(1), p 94–101.

    Article  CAS  Google Scholar 

  87. J.A. Hawk, R.D. Wilson, J.H. Tylczak and Ö.N. Doğan, Laboratory Abrasive Wear Tests: Investigation of Test Methods and Alloy Correlation, Wear, 1999, 225–229, p 1031–1042.

    Article  Google Scholar 

  88. G. Saha, K. Valtonen, A. Saastamoinen, P. Peura and V.-T. Kuokkala, Impact-Abrasive and Abrasive Wear Behavior of Low Carbon Steels With a Range of Hardness-Toughness Properties, Wear, 2020, 450–451, p 203263.

    Article  CAS  Google Scholar 

  89. R.D. Wilson and J.A. Hawk, Impeller Wear Impact-Abrasive Wear Test, Wear, 1999, 225–229, p 1248–1257.

    Article  Google Scholar 

  90. S.F. Scieszka, Wear Transition as a Means of Fracture Toughness Evaluation of Hardmetals, Tribol. Lett., 2001, 11(3), p 185–194.

    Article  CAS  Google Scholar 

  91. B. Liu, W. Li, L. Xianwen, X. Jia and X. Jin, An Integrated Model of Impact-Abrasive Wear in Bainitic Steels Containing Retained Austenite, Wear, 2019, 440–441, p 203088.

    Article  CAS  Google Scholar 

  92. T. Teeri, V.-T. Kuokkala, P. Siitonen, P. Kivikytö-Reponen and J. Liimatainen, Impact Wear in Mineral Crushing, Proc. Eston. Acad. Sci. Eng. Eston. Acad. Publ., 2006, 12, p 408–418.

    CAS  Google Scholar 

  93. Z. Pei, R. Song, Q. Ba and Y. Feng, Dimensionality Wear Analysis: Three-Body Impact Abrasive Wear Behavior of a Martensitic Steel in Comparison with Mn13Cr2, Wear, 2018, 414–415, p 341–351.

    Article  CAS  Google Scholar 

  94. E. Wen, R. Song and W. Xiong, Effect of Tempering Temperature on Microstructures and Wear Behavior of a 500 HB Grade Wear-Resistant Steel, Metals, 2019, 9(1), p 45.

    Article  CAS  Google Scholar 

  95. R. Dalai, S. Das and K. Das, Effect of Thermo-Mechanical Processing on the Low Impact Abrasion and Low Stress Sliding Wear Resistance of Austenitic High Manganese Steels, Wear, 2019, 420–421, p 176–183.

    Article  CAS  Google Scholar 

  96. K. Valtonen, N. Ojala, O. Haiko and V.-T. Kuokkala, Comparison of Various High-Stress Wear Conditions and Wear Performance of Martensitic Steels, Wear, 2019, 426–427, p 3–13.

    Article  CAS  Google Scholar 

  97. A.G. Kostryzhev, C.R. Killmore, D. Yu and E.V. Pereloma, Martensitic Wear Resistant Steels Alloyed with Titanium, Wear, 2020, 446–447, p 203203.

    Article  CAS  Google Scholar 

  98. M. Fiset, G. Huard and J. Masounave, Effect of the Abrasive Nature on the Impact and Impact-Abrasion Wear Rate of a Martensitic Cast Iron, J. Mater. Sci. Lett., 1990, 9(12), p 1456–1458.

    Article  CAS  Google Scholar 

  99. O.A. Zambrano, D.S. García, S.A. Rodríguez and J.J. Coronado, The Mild-Severe Wear Transition in Erosion Wear, Tribol. Lett., 2018, 66(3), p 95.

    Article  Google Scholar 

  100. Y. Ali, C.D. Garcia-Mendoza and J.D. Gates, Effects of ‘Impact’ and Abrasive Particle Size on the Performance of White Cast Irons Relative to Low-Alloy Steels in Laboratory Ball Mills, Wear, 2019, 426–427, p 83–100.

    Article  CAS  Google Scholar 

  101. M. Kallel, F. Zouch, Z. Antar, A. Bahri and K. Elleuch, Hammer Premature Wear in Mineral Crushing Process, Tribol. Int., 2017, 115, p 493–505.

    Article  CAS  Google Scholar 

  102. W. Wang, R. Song, S. Peng and Z. Pei, Multiphase Steel with Improved Impact-Abrasive Wear Resistance in Comparison with Conventional Hadfield Steel, Mater. Des., 2016, 105, p 96–105.

    Article  CAS  Google Scholar 

  103. Lu. Jun, Yu. Hao, P. Kang, X. Duan and C. Song, Study of Microstructure, Mechanical Properties and Impact-Abrasive Wear Behavior of Medium-Carbon Steel Treated by Quenching and Partitioning (Q&P) Process, Wear, 2018, 414–415, p 21–30.

    Google Scholar 

  104. P.C. Machado, J.I. Pereira and A. Sinatora, Abrasion Wear of Austenitic Manganese Steels via Jaw Crusher Test, Wear, 2021 https://doi.org/10.1016/j.wear.2021.203726

    Article  Google Scholar 

  105. L.B. Varela, G. Tressia, M. Masoumi, E.M. Bortoleto, C. Regattieri and A. Sinatora, Roller Crushers in Iron Mining, How Does the Degradation of Hadfield Steel Components Occur?, Eng. Fail. Anal., 2021, 122, p 105295.

    Article  CAS  Google Scholar 

  106. P. Radziszewski, Exploring Total Media Wear, Miner. Eng., 2002, 15(12), p 1073–1087.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the National Research Council Canada for the support. The views and conclusions contained herein are those of the author and not necessarily represent the official policies of the National Research Council Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Zambrano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zambrano, O.A. A Review on the Effect of Impact Toughness and Fracture Toughness on Impact-Abrasion Wear. J. of Materi Eng and Perform 30, 7101–7116 (2021). https://doi.org/10.1007/s11665-021-05960-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05960-5

Keywords

Navigation