Skip to main content
Log in

Characterization of Microstructure and Microtexture in a Cold-Rolled and Intercritically Annealed Dual-Phase Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Microstructure and microtexture of a dual-phase (DP) steel was investigated using the electron backscattered diffraction (EBSD) technique. A DP600 steel was produced by 60% cold-rolling a low carbon steel with an initial ferrite pearlite microstructure followed by intercritical annealing at 720°C for 1 h. Kernel average misorientation map of the DP600 steel showed that the density of geometrically necessary dislocations as well as the local misorientation is higher in the vicinity of ferrite–martensite interfaces compared to the middle of the ferrite grains. Microtexture analysis of the cold-rolled steel by EBSD revealed that a strong α fiber and weaker γ fiber texture forms after cold-rolling. After intercritical annealing, the intensity of the α fiber texture is significantly reduced, whereas that of the more desirable γ fiber texture is slightly increased. The maximum texture intensity in the DP600 steel was observed for (112)[110] component in the α fiber, and (111)[123] and (111)[112] components in the γ fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. M.S. Rashid, Dual Phase Steels, Annual Rev. Mater. Sci., 1981, 11, p 245–266

    Article  CAS  Google Scholar 

  2. H. Ashrafi, M. Shamanian, R. Emadi and N. Saeidi, Examination of Phase Transformation Kinetics During Step Quenching of Dual Phase Steels, Mater. Chem. Phys., 2017, 187, p 203–217

    Article  CAS  Google Scholar 

  3. H. Mirzadeh, M. Alibeyki and M. Najafi, Unraveling the Initial Microstructure Effects on Mechanical Properties and Work-Hardening Capacity of Dual-phase Steel, Metal. Mater. Trans. A, 2017, 48, p 4565–4573

    Article  CAS  Google Scholar 

  4. Y. Cao, B. Karlsson and J. Ahlström, Temperature and Strain Rate Effects on the Mechanical Behavior of Dual Phase steel, Mater. Sci. Eng. A, 2015, 636, p 124–132

    Article  CAS  Google Scholar 

  5. H. Ashrafi, M. Shamanian, R. Emadi and E. Ghassemali, Void Formation and Plastic Deformation Mechanism of a Cold-Rolled Dual-Phase Steel During Tension, Acta Metall Sin. Engl. Lett., 2020, 33, p 299–306

    Article  CAS  Google Scholar 

  6. D.A. Hughes, N. Hansen and D.J. Bammann, Geometrically Necessary Boundaries, Incidental Dislocation Boundaries and Geometrically Necessary Dislocations, Scripta Mater., 2003, 48, p 147–153

    Article  CAS  Google Scholar 

  7. H. Gao and Y. Huang, Geometrically Necessary Dislocation and Size-Dependent Plasticity, Scripta Mater., 2003, 48, p 113–118

    Article  CAS  Google Scholar 

  8. S. Das, F. Hofmann and E. Tarleton, Consistent Determination of Geometrically Necessary Dislocation Density from Simulations and Experiments, Intl. J. Plact., 2018, 109, p 18–42

    Article  Google Scholar 

  9. C. Moussa, M. Bernacki, R. Besnard and N. Bozzolo, About Quantitative EBSD Analysis of Deformation and Recovery Substructures in Pure Tantalum, Mater. Sci. Eng., 2015, 89, p 1–7

    Google Scholar 

  10. D. Wallis, L.N. Hansen, T.B. Britton and A.J. Wilkinson, Geometrically Necessary Dislocation Densities in Olivine Obtained Usinghigh-Angular Resolution Electron Backscatter Diffraction, Ultramicroscopy, 2016, 168, p 34–45

    Article  CAS  Google Scholar 

  11. W. Pantleon, Resolving the Geometrically Necessary Dislocation Content by Conventional Electron Backscattering Diffraction, Scripta Mater., 2008, 58, p 994–997

    Article  CAS  Google Scholar 

  12. J. Jiang, T.B. Britton and A.J. Wilkinson, Accumulation of Geometrically Necessary Dislocations Near Grain Boundaries in Deformed Copper, Philos. Mag. Let., 2012, 92, p 580–588

    Article  CAS  Google Scholar 

  13. P.J. Konijnenberg, S. Zaefferer and D. Raabe, Assessment of Geometrically Necessary Dislocation Levels Derived by 3D EBSD, Acta Mater., 2015, 99, p 402–414

    Article  CAS  Google Scholar 

  14. S.I. Wright, M.M. Nowell and D.P. Field, A Review of Strain Analysis Using Electron Backscatter Diffraction, Microsc. Microanal., 2011, 17, p 316–329

    Article  CAS  Google Scholar 

  15. A. Ramazani, K. Mukherjee, U. Prahl and W. Bleck, Transformation-Induced, Geometrically Necessary, Dislocation-Based Flow Curve Modeling of Dual-Phase Steels: Effect of Grain Size, Metal. Mater. Trans. A, 2012, 43, p 3850–3869

    Article  CAS  Google Scholar 

  16. H. Ghassemi-Armaki, R. Maa, S.P. Bhat, S. Sriram, J.R. Greer and K.S. Kumar, Deformation Response of Ferrite and Martensite in a Dual-phase Steel, Acta Mater., 2014, 62, p 197–211

    Article  CAS  Google Scholar 

  17. J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber and M. Calcagnotto, Experimental and Numerical Study on Geometrically Necessary Dislocations and Non-homogeneous Mechanical Properties of the Ferrite Phase in Dual Phase Steels, Acta Mater., 2011, 59, p 4387–4394

    Article  CAS  Google Scholar 

  18. M. Calcagnotto, D. Ponge, E. Demir and D. Raabe, Orientation Gradients and Geometrically Necessary Dislocations in Ultrafine Grained Dual-Phase Steels Studied by 2D and 3D EBSD, Mater. Sci. Eng. A, 2010, 527, p 2738–2746

    Article  CAS  Google Scholar 

  19. M. Hölscher, D. Raabe and K. Lücke, Rolling and Recrystallization Textures of bcc Steels, Mater. Technol, 1991, 62, p 567–575

    Google Scholar 

  20. E. Ohaeri, J. Szpunar, F. Fazeli and M. Arafin, Hydrogen Induced Cracking Susceptibility of API 5L X70 Pipeline Steel in Relation to Microstructure and Crystallographic Texture Developed After Different Thermomechanical Treatments, Mater. Charact., 2018, 145, p 142–156

    Article  CAS  Google Scholar 

  21. V. Javaheri, N. Khodaie, A. Kaijalainen and D. Porter, Effect of Niobium and Phase Transformation Temperature on the Microstructure and Texture of a novel 0.40% C Thermomechanically Processed Steel, Mater. Charact., 2018, 142, p 295–308

    Article  CAS  Google Scholar 

  22. J.I. Omale, E.G. Ohaeri, A.A. Tiamiyu, M. Eskandari, K.M. Mostafijur and J.A. Szpunar, Microstructure, Texture Evolution and Mechanical Properties of X70 Pipeline Steel After Different Thermomechanical Treatments, Mater. Sci. Eng. A, 2017, 703, p 477–485

    Article  CAS  Google Scholar 

  23. C. Haase, L.A. Barrales-Mora, F. Roters, D.A. Molodov and G. Gottstein, Applying the Texture Analysis for Optimizing Thermomechanical Treatment of High Manganese Twinning-Induced Plasticity Steel, Acta Mater., 2014, 80, p 327–340

    Article  CAS  Google Scholar 

  24. K.H. Oh, S.M. Park, Y.M. Koo and D.N. Lee, Thermomechanical Treatment for Enhancing Gamma Fiber Component in Recrystallization Texture of Copper-Bearing Bake Hardening Steel, Mater. Sci. Eng. A, 2011, 528, p 6455–6462

    Article  CAS  Google Scholar 

  25. Y. Weng, H. Dong and Y. Gan, Advanced Steels: The Recent Scenario in Steel Science and Technology, In, Springer-Verlag, Berlin Heidelberg, Berlin, 2011.

    Book  Google Scholar 

  26. Z.G. Wang, A.M. Zhao, Z.Z. Zhao, J.Y. Ye, J.J. Chen and J.G. He, Precipitation Behavior and Textural Evolution of Cold-Rolled High Strength Deep Drawing Dual-Phase Steels, J. Iron Steel Res. Intl., 2013, 20, p 61–68

    Article  Google Scholar 

  27. S.H. Han, S.H. Choi, J.K. Choi, H.G. Seong and I.B. Kim, Effect of Hot-Rolling Processing on Texture and r-value of Annealed Dual-phase Steels, Mater. Sci. Eng. A, 2010, 527, p 1686–1694

    Article  CAS  Google Scholar 

  28. D.K. Mondal and R.K. Ray, Development of 111 Texture During Cold Rolling and Recrystallization of a C-Mn-V Dual-Phase Steel, Mater. Sci. Eng. A, 1992, 158, p 147–156

    Article  Google Scholar 

  29. P.R. Mondi, R. Madhavan, V.S. Sarma and S. Sankaran, Study of Texture in Ultra Fine Grained Dual Phase Steel Sheets, Mater. Sci. Forum, 2012, 702–703, p 806–809

    Google Scholar 

  30. A. Ghatei-Kalashami, A. Kermanpur, E. Ghassemali, A. Najafizadeh and Y. Mazaheri, The Effect of Nb on Texture Evolutions of the Ultrafine-Grained Dual-Phase Steels Fabricated by Cold Rolling and Intercritical Annealing, J. Alloy Compd., 2017, 694, p 1026–1035

    Article  CAS  Google Scholar 

  31. M.P. Rao, V.S. Sarma and S. Sankaran, Microstructure and Mechanical Properties of V-Nb Microalloyed Ultrafine-Grained Dual-Phase Steels Processed Through Severe Cold Rolling and Intercritical Annealing, Metal. Mater. Trans. A, 2017, 48, p 1176–1188

    Article  CAS  Google Scholar 

  32. H. Ashrafi, M. Shamanian, R. Emadi and N. Saeidi, Correlation of Tensile Properties and Strain Hardening Behavior with Martensite Volume Fraction in Dual-Phase Steels, Trans. Ind. Inst. Met., 2017, 70, p 1575–1584.

    Article  CAS  Google Scholar 

  33. B. Beausir, J.J. Fundenberger, Analysis Tools for Electron and X-ray diffraction, ATEX—software, www.atex-software.eu, in, Université de Lorraine - Metz, (2017)

  34. T. Maitland and S. Sitzman, Electron Backscatter Diffraction (EBSD) Technique and Materials Characterization Examples, Scanning Microscopy for Nanotechnology: Techniques and Applications. W. Zhou, Z.L. Wang Ed., Springer-Verlag, New York, 2007

    Google Scholar 

  35. J. Wu, P.J. Wray, C.I. Garcia, M. Hua and A.J. Deardo, Image quality Analysis: A New Method of Characterizing Microstructures, ISIJ Intl., 2005, 45, p 254–262

    Article  CAS  Google Scholar 

  36. S.H. Choi, E.Y. Kim, W. Woo, S.H. Han and J.H. Kwak, The Effect of Crystallographic Orientation on the Micromechanical Deformation and Failure Behaviors of DP980 Steel During Uniaxial Tension, Intl. J. Plact., 2013, 45, p 85–102

    Article  CAS  Google Scholar 

  37. H.P. Lin, D. Chen and J.C. Kuo, Grain Boundary Evolution of Cold-rolled FePd Alloy During FePd Alloy During Recrystallization at Disordering Temperature, Materials, 2015, 8, p 3254–3267

    Article  CAS  Google Scholar 

  38. S. Kumar-Paul and A. Kumar, Micromechanics Based Modeling to Predict Flow Behavior and Plastic Strain Localization of Dual Phase Steels, Comput. Mater. Sci., 2012, 63, p 66–74

    Article  CAS  Google Scholar 

  39. R. Joodaki, S.R.A. Zaree, K. Gheisari and M. Eskandari, Effect of Annealing Treatments on the Microstructure and Texture Development in API 5L X60 Microalloyed Pipeline Steel, J. Mater. Eng. Perform., 2017, 26, p 2003–2013

    Article  CAS  Google Scholar 

  40. J.Y. Kang, D.I. Kim and H.C. Lee, Texture Development in Low Carbon Sheet Steels for Automotive Application, Microstructure and Texture in Steels and Other Materials. A. Haldar, S. Suwas, D. Bhattacharjee Ed., Springer-Verlag, India, 2008

    Google Scholar 

  41. W.G. Burgers and P.C. Louwerse, Deformationsvorgang und Rekristallisationstextur bei Aluminium, Z. Phys., 1931, 67, p 605–678

    Article  CAS  Google Scholar 

  42. C.S. Barrett, Recrystallization Texture of Aluminum After Compression, Trans. AIME, 1940, 137, p 128–146

    Google Scholar 

  43. G. Ibe and K. Lücke, Growth Selection during Recrystallization of Single Crystals, Recrystallization, Grain Growth and Textures. H. Margolin Ed., ASM, Metals Park, OH, 1965, p 434–447

    Google Scholar 

  44. D. Zhuang, L. Wang, Y. Huang, X. Li and D. Ren, Microstructure and Texture Evolution During Recrystallization of Low-carbon Steel Sheets, J. Iron Steel Res. Intl., 2017, 24, p 84–90

    Article  Google Scholar 

  45. M. Abbasi, D.I. Kim, T.W. Nelson and M. Abbasi, EBSD and Reconstruction of Pre-transformation Microstructures, Examples and Complexities in Steels, Mater. Charact., 2014, 95, p 219–231

    Article  CAS  Google Scholar 

  46. J.Y. Kang, H.C. Lee and S.H. Han, Effect of Al and Mo on the Textures and Microstructures of Dual Phase Steels, Mater. Sci. Eng. A, 2011, 530, p 183–190

    Article  CAS  Google Scholar 

  47. W.C. Jeong, Effect of carbon on microstructure and mechanical properties of low c-1.6 pct Mn-0.1 pct Cr-0.3 pct Mo-0.0005 pct B dual-phase steels, Metal. Mater. Trans. A, 2014, 45, p 5286–5289

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ashrafi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashrafi, H., Shamanian, M., Emadi, R. et al. Characterization of Microstructure and Microtexture in a Cold-Rolled and Intercritically Annealed Dual-Phase Steel. J. of Materi Eng and Perform 30, 7306–7313 (2021). https://doi.org/10.1007/s11665-021-05947-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05947-2

Keywords

Navigation