Skip to main content
Log in

Research on Hot Deformation Behavior of As-Forged TC17 Titanium Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The high-temperature deformation behavior of the as-forged TC17 titanium alloy was studied based on the results of thermal compression simulation tests. Additionally, the effects of strain rate, temperature and true strain on the flow stress were analyzed using orthogonal experimentation and variance analysis. The results indicated that all deformation parameters exerted significant influence on flow stress, with temperature and strain having the largest and least influence, respectively. Thereafter, a constitutive equation based on modified nonlinear regression was proposed. The error analysis results showed that the flow stress of the as-forged TC17 alloy could be predicted by the obtained constitutive equation. The effect of deformation parameters on the microstructure was investigated by EBSD and TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18.
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. J.J.G. Moreno, D.G. Papageorgiou, G.A. Evangelakis and C.E. Lekka, An Ab Initio Study of the Structural and Mechanical Alterations of Ti-Nb Alloys, J. Appl. Phys., 2018, 124, p 245102.

    Article  Google Scholar 

  2. R.V. Chernozem, M.A. Surmeneva, B. Krause, T. Baumbach, V.P. Ignatov, A.I. Tyurin, K. Loza, M. Epple and R.A. Surmenev, Hybrid Biocomposites Based on Titania Nanotubes and a Hydroxyapatite Coating Deposited by RF-Magnetron Sputtering: Surface Topography, Structure, And Mechanical Properties, Appl. Surf. Sci, 2017, 426, p 229–237.

    Article  CAS  Google Scholar 

  3. F. Khodabakhshi, B. Marzbanrad, H. Jahed and A.P. Gerlich, Interfacial Bonding Mechanisms Between Aluminum and Titanium During Cold Gas Spraying Followed by Friction-Stir Modification, Appl. Surf. Sci, 2018, 462, p 739–752.

    Article  CAS  Google Scholar 

  4. M.L. Dong, X.F. Cui, B.W. Lu, G. Jin, Z.B. Cai, X.R. Feng, Z. Liu and H.D. Wang, Effect of Ti Plus N and Zr Plus N Ions Implantation on Mechanical and Corrosion Performance of Carburized Layer, Thin Solid Films, 2019, 692, p 137597. https://doi.org/10.1016/j.tsf.2019.137597

    Article  CAS  Google Scholar 

  5. X. Ji, I. Gutierrez-Urrutia, S. Emura, T.W. Liu, T. Nara, X.H. Min, D.H. Ping and K. Tsuchiya, Twinning Behavior of Orthorhombic-Alpha" Martensite in a Ti-7.5Mo Alloy, Sci. Technol. Adv. Mat, 2019, 20, p 401–411.

    Article  CAS  Google Scholar 

  6. Y. Gu, K. Ying, D.S. Shen, L.J. Huang, X.B. Ying, H.Q. Huang, K. Cheng, J.Z. Chen, Y.Y. Zhou, T. Chen and H.J. Feng, Using Sewage Sludge Pyrolytic Gas to Modify Titanium Alloy to Obtain High-Performance Anodes in Bio-Electrochemical Systems, J. Power Sources, 2017, 372, p 38–45.

    Article  CAS  Google Scholar 

  7. L. Tan, C.F. Yao, D.H. Zhang, J.X. Ren, Z. Zhou, J.Y. Zhang, Evolution of Surface Integrity and Fatigue Properties After Milling, Polishing, and Shot Peening of TC17 Alloy Blades. Int. J. Fatigue 136, 105630 (2020). https://doi.org/10.1016/j.ijfatigue.2020.105630

  8. Z.W. Cao, H.Y. Xu, S.K. Zou and Z.G. Che, Investigation of Surface Integrity on TC17 Titanium Alloy Treated by Square-spot Laser Shock Peening, Chin. J. Aeronaut, 2012, 25, p 650–656.

    Article  CAS  Google Scholar 

  9. P.K. Zhao, L. Fu and D.C. Zhong, Numerical Simulation Of Transient Temperature and Axial Deformation During Linear Friction Welding Between TC11 and TC17 Titanium Alloys, Comp. Mater. Sci, 2014, 92, p 325–333.

    Article  CAS  Google Scholar 

  10. F. Tian, W.D. Zeng, X. Ma, K.X. Wang, Y.T. Shao and Y.G. Zhou, Quantitative Analysis of the Orientation of Lamellar alpha in TC17 Titanium Alloy, Rare Metal Mat. Eng, 2012, 41, p 998–1003.

    CAS  Google Scholar 

  11. E.I. Galindo-Nava and P.E.J. Rivera-Diaz-del-Castillo, Modelling Plastic Deformation in BCC Metals: Dynamic Recovery and Cell Formation Effects, Mat. Sci. Eng. a-Struct, 2012, 558, p 641–648.

    Article  CAS  Google Scholar 

  12. D.S. Gianola, D. Farkas, M. Gamarra and M.R. He, The Role of Confinement on Stress-Driven Grain Boundary Motion in Nanocrystalline Aluminum Thin Films, J. Appl. Phys, 2012, 112, p 12.

    Article  Google Scholar 

  13. M.-H. Jang, J.-Y. Kang, J.H. Jang, T.-H. Lee and C. Lee, Hot Deformation Behavior and Microstructural Evolution of Alumina-Forming Austenitic Heat-Resistant Steels During Hot Compression, Mater. Charact., 2017, 123, p 207–217.

    Article  CAS  Google Scholar 

  14. Q. Liu, Z. Wang, H. Yang and Y. Ning, Hot Deformation Behavior and Processing Maps of Ti-6554 Alloy for Aviation Key Structural Parts, Metals, 2020, 10, p 828.

    Article  Google Scholar 

  15. B. Ke, L. Ye, J. Tang, Y. Zhang, S. Liu, H. Lin, Y. Dong and X. Liu, Hot Deformation Behavior and 3D Processing Maps of AA7020 Aluminum Alloy, J. Alloys Compd., 2020, 845, p 156113.

    Article  CAS  Google Scholar 

  16. P. Liu, R. Zhang, Y. Yuan, C. Cui, Y. Zhou and X. Sun, Hot Deformation Behavior and Workability of a Ni–Co Based Superalloy, J. Alloys Compd., 2020, 831, p 154618.

    Article  CAS  Google Scholar 

  17. M. Jia, Y. Alshammari, F. Yang and L. Bolzoni, Effect of Heat Treatment on the Microstructure and Mechanical Properties of Blended Elemental Ti–6Al–4V Produced by Powder Forging, Mater. Sci. Eng, 2020, 791, p 139724.

    Article  CAS  Google Scholar 

  18. X. Ma, W. Zeng, Y. Sun, K. Wang, Y. Lai and Y. Zhou, Modeling Constitutive Relationship of Ti17 Titanium Alloy with Lamellar Starting Microstructure, Mater. Sci. Eng. A, 2012, 538, p 182–189.

    Article  CAS  Google Scholar 

  19. I. Weiss and S.L. Semiatin, Thermomechanical Processing of Beta Titanium Alloys —An Overview, Mater. Sci. Eng. A, 1998, 243, p 46–65.

    Article  Google Scholar 

  20. J. Luo, L. Li and M.Q. Li, The Flow Behavior and Processing Maps During the Isothermal Compression of Ti17 alloy, Mater. Sci. Eng. A, 2014, 606, p 165–174.

    Article  CAS  Google Scholar 

  21. L. Li and M.Q. Li, Evolution Characterization of α Lamellae During Isothermal Compression of TC17 Alloy with Colony-α Microstructure, Mater. Sci. Eng. A, 2018, 712, p 637–644.

    Article  CAS  Google Scholar 

  22. J.K. Fan, J.S. Li, Y.D. Zhang, H.C. Kou, L. Germain, N. Siredey-Schwaller and C. Esling, Microstructure and Crystallography of α Phase Nucleated Dynamically During Thermo-Mechanical Treatments in Metastable β Titanium Alloy, Adv. Eng. Mater, 2017, 19, p 1600859.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support received from Key Research and Development Program of Shaanxi Province No. 2020ZDLGY13-06 and No. 2020ZDLGY12-10.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Cai or Ke Qiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Guo, M., Peng, P. et al. Research on Hot Deformation Behavior of As-Forged TC17 Titanium Alloy. J. of Materi Eng and Perform 30, 7259–7274 (2021). https://doi.org/10.1007/s11665-021-05942-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05942-7

Keywords

Navigation