Skip to main content
Log in

Study of an Intraply/Yarn Composite Submitted to Low-Velocity Impact in the Presence of High Void Content

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The aim of this article was to assess low-velocity impact resistance in polymer composites in the presence of voids, reporting residual mechanical and impact properties, comparing the results with other literature materials and determining the extent to which voids influenced the final result. Thus, three composites with 11 layers were developed, two hybrids (IAYKG) with 3 layers of bidirectional hybrid kevlar/glass strands (intraply/yarn) placed in the middle and outer layers of the laminate, and 8 layers bidirectional fabric with different sized glass fibers, which influenced their void percentage (9 and 4%, respectively), in addition to a non-hybrid composite containing only glass fiber (WG). The tests were carried out using four impact energies (46, 62, 76 and 101 J) until total perforation. As a result, the hybrid yarn improved impact resistance and increased void content (9%), thereby relieving stresses and decreasing damage propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Mars, E. Chebbi, M. Wali and F. Dammak, Numerical and Experimental Investigations of Low Velocity Impact on Glass fiber-Reinforced Polyamide, Compos. B Eng., 2018, 146, p 116–123.

    Article  CAS  Google Scholar 

  2. A. Gliszczynski, T. Kubiak, P. Rozylo, P. Jakubczak and J. Bieniaś, The Response of Laminated Composite Plates and Profiles Under Low-velocity Impact Load, Compos. Struct., 2019, 207, p 1–12.

    Article  Google Scholar 

  3. L. Jing, X. Su, D. Chen, F. Yang and L. Zhao, Experimental and Numerical Study of Sandwich Beams with Layered-Gradient Foam Cores Under Low-Velocity Impact, Thin-Walled Struct., 2019, 135, p 227–244.

    Article  Google Scholar 

  4. J. Krollmann, T. Schreyer, M. Veidt and K. Drechsler, Impact and Post-impact Properties of Hybrid-matrix Laminates Based on Carbon Fiber-reinforced Epoxy and Elastomer Subjected to Low-velocity Impacts, Compos. Struct., 2019, 208, p 535–545.

    Article  Google Scholar 

  5. W. He, L. Yao, X. Meng, G. Sun, D. Xie and J. Liu, Effect of Structural Parameters on Low-velocity Impact Behavior of Aluminum Honeycomb Sandwich Structures with CFRP Face Sheets, Thin-Walled Struct., 2019, 137, p 411–432.

    Article  Google Scholar 

  6. M.Z. Sadeghi, P. Nienheysen, S. Arslan, A. Dafnis, B. Silva Marció, R.H. Schmitt and K.U. Schröder, Damage Detection by Double-sided Ultrasonic Assessment in Low-velocity Impacted CFRP Plates, Compos. Struct., 2019, 208, p 646–655.

    Article  Google Scholar 

  7. M. Salvetti, A. Gilioli, C. Sbarufatti, A. Manes and M. Giglio, Analytical Model of the Dynamic Behaviour of CFRP Plates Subjected to Low-velocity Impacts, Compos. B Eng., 2018, 142, p 47–55.

    Article  CAS  Google Scholar 

  8. M. Mehdikhani, L. Gorbatikh, I. Verpoest and S.V. Lomov, Voids in Fiber-reinforced Polymer Composites: A Review on their Formation, Characteristics, and Effects on Mechanical Performance, J. Compos. Mater., 2019, 53(12), p 1579–1669.

    Article  CAS  Google Scholar 

  9. W.T. Kern, W. Kim, A. Argento, E.C. Lee and D.F. Mielewski, Finite Element Analysis and Microscopy of Natural Fiber Composites Containing Microcellular Voids, Mater. Design, 2016, 106, p 285–294.

    Article  Google Scholar 

  10. M. Mehdikhani, E. Steensels, A. Standaert, K.A.M. Vallons, L. Gorbatikh and S.V. Lomov, Multi-scale Digital Image Correlation for Detection and Quantification of Matrix Cracks in Carbon Fiber Composite Laminates in the Absence and Presence of Voids Controlled by the Cure Cycle, Compos. Part B Eng., 2018, 154, p 138–147.

    Article  CAS  Google Scholar 

  11. L. Di Landro, A. Montalto, P. Bettini, S. Guerra, F. Montagnoli and M. Rigamonti, Detection of Voids in Carbon/epoxy Laminates and their Influence on Mechanical Properties, Polym. Polym. Compos., 2017, 25(5), p 371–380.

    Google Scholar 

  12. S. Aratama, R. Hashizume, K. Takenaka, K. Koga, Y. Tsumura, T. Miyake, M. Nishikawa and M. Hojo, Microscopic Observation of Voids and Transverse Crack Initiation in CFRP Laminates, Adv. Compos. Mater, 2016, 25, p 115–130.

    Article  CAS  Google Scholar 

  13. K. Hamamousse, Z. Sereir, R. Benzidane, F. Gehring, M. Gomina and C. Poilâne, Experimental and Numerical Studies on the Low-velocity Impact Response of Orthogrid Epoxy Panels Reinforced with Short Plant Fibers, Compos. Struct., 2019, 211, p 469–480.

    Article  Google Scholar 

  14. X.C. Sun, L.F. Kawashita, A.S. Kaddour, M.J. Hiley and S.R. Hallett, Comparison of Low Velocity Impact Modelling Techniques for Thermoplastic and Thermoset Polymer Composites, Compos. Struct., 2018, 203, p 659–671.

    Article  Google Scholar 

  15. M. Amirkhosravi, M. Pishvar and M.C. Altan, Improving laminate quality in Wet Lay-up/vacuum Bag Processes by Magnet Assisted Composite Manufacturing (MACM), Compos. A Appl. Sci. Manuf., 2017, 98, p 227–237.

    Article  CAS  Google Scholar 

  16. M. Pishvar, M. Amirkhosravi and M.C. Altan, Magnet Assisted Composite Manufacturing: A Novel Fabrication Technique for High Quality Composite Laminates, Polym. Compos., 2019, 40(1), p 159–169.

    Article  CAS  Google Scholar 

  17. A.K. Bandaru, S. Patel, S. Ahmad and N. Bhatnagar, An Experimental and Numerical Investigation on the Low Velocity Impact Response of Thermoplastic Hybrid Composites, J. Compos. Mater., 2018, 52(7), p 877–889.

    Article  CAS  Google Scholar 

  18. J.J. Andrew, S.M. Srinivasan and A. Arockiarajan, Influence of Patch Lay-up Configuration and Hybridization on Low velocity Impact and Post-impact Tensile Response of Repaired Glass Fiber Reinforced Plastic Composites, J. Compos. Mater., 2019, 53(1), p 3–17.

    Article  CAS  Google Scholar 

  19. S. Ying, T. Mengyun, R. Zhijun, S. Baohui and C. Li, An Experimental Investigation on the Low-velocity Impact Response of Carbon–aramid/epoxy Hybrid Composite Laminates, J. Reinf. Plast. Compos., 2017, 36(6), p 422–434.

    Article  CAS  Google Scholar 

  20. J. Kakakasery, V. Arumugam, K. Abdul Rauf, D. Bull, A.R. Chambers, C. Scarponi and C. Santulli, Cure Cycle Effect on Impact Resistance Under Elevated Temperatures in Carbon Prepreg Laminates Investigated Using Acoustic Emission, Compos. B Eng., 2015, 75, p 298–306.

    Article  CAS  Google Scholar 

  21. B. Arthurs, D.J. Bulla, V. Arumugam, A.R. Chambers and C. Santulli, Porosity Effect on Residual Flexural Strength Following Low Energy Impact of Carbon Fibre Composites, Polym. Polym. Compos., 2015, 23(4), p 205–212.

    CAS  Google Scholar 

  22. American Society for Testing and Materials. ASTM D792 (2013). Specific Gravity and Density of Plastics by Displacement

  23. American Society for Testing and Materials. ASTM D 3171 (2015), Standard Test Methods for Constituent Content of Composite Materials

  24. R.D. Cunha, R.A.D. Cunha, R.C.S. Freire Junior and W.F. Amorim Junior, Study of the Resistance Variation in Intraply/yarn kevlar/glass Composite After Low-velocity Impact, J. Mater. Eng. Perform., 2020, 1, p 1–10.

    Google Scholar 

  25. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D 7136 (2015). Standard Test Method for Measuring the Damage Resistance of a Fiber–reinforced Polymer Matrix Composite to a Drop-weight Impact Event

  26. American society for testing and materials. ASTM D790 (2017). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials

  27. C.M.D. Azevedo, R.D. Cunha, R.C.S. Freire Junior and W.F. Amorim Junior, Development of a Mathematical Model to Analyze Residual Strength of Composites After Low-velocity Impact, J. Strain Anal. Eng. Design, 2018, 53(8), p 738–745.

    Article  Google Scholar 

  28. Santos JKD, Cunha RD, Amorimjunior WF, Felipe RCTS, Neto JLB, Freirejúnior RCS. The variation in low speed impact strength on glass fiber/Kevlar composite hybrids. J. Compos. Mater., pp. 1–11, (2020)

  29. J.S. Lin, Effect of Surface Modification by Bromination and Metalation on Kevlar Fibre-epoxy Adhesion, Euro. Polym. J., 2002, 38(1), p 79–86.

    Article  CAS  Google Scholar 

  30. J. Nasser, J. Lin, K. Steinke and H.A. Sodano, Enhanced Interfacial Strength of Aramid Fiber Reinforced Composites Through Adsorbed Aramid Nanofiber Coatings, Compos. Sci. Technol., 2019, 174, p 125–133.

    Article  CAS  Google Scholar 

  31. U.K. Vaidya, Impact response of laminated and sandwich composites, Impact Engineering of Composite Structures. S. Abrate Ed., Springer, Vienna, 2011, p 97–191

    Chapter  Google Scholar 

  32. T.H. Mahdi, M.E. Islam, M.V. Hosur and S. Jeelani, Low-velocity Impact Performance of Carbon Fiber-Reinforced Plastics Modified with Carbon Nanotube, Nanoclay and Hybrid Nanoparticles, J. Reinf.Plast. Compos., 2017, 36(9), p 696–713.

    Article  CAS  Google Scholar 

  33. K.K. Singh, N.K. Singh and R. Jha, Analysis of Symmetric and Asymmetric Glass Fiber Reinforced Plastic Laminates Subjected to Low-velocity Impact, J. Compos. Mater., 2016, 50(14), p 1853–1863.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CAPES (Coordination for the Improvement of Higher Level Personnel) and CNPq (National Council for Scientific and Technological), Funding Code 001, for the research grant, the UFCG (Universidade Federal de Campina Grande) for the use of the Impact Test and IFPA (Instituto Federal do Pará – Campus Parauapebas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimundo Carlos Silverio Freire Júnior.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cunha, R.A.D., da Cunha, R.D., de Amorim Junior, W.F. et al. Study of an Intraply/Yarn Composite Submitted to Low-Velocity Impact in the Presence of High Void Content. J. of Materi Eng and Perform 30, 7523–7531 (2021). https://doi.org/10.1007/s11665-021-05923-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05923-w

Keywords

Navigation