Skip to main content
Log in

Vat-Photopolymerization-Based Ceramic Manufacturing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This article presents a detailed account of the processes involved in vat-photopolymerization-based fabrication of ceramics, namely bioceramics, structural ceramics, piezoelectric ceramics, optical ceramics, and polymer-derived ceramics. Information and methods of material preparation, curing characteristics, green-part fabrication, property identification, process design and planning, and quality control and optimization are introduced. The article also provides information on postprocessing techniques, namely debinding and sintering, as well as on the phenomenon of shrinkage and compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. B. Murat, Engineering Ceramics, Springer Science and Business Media, Berlin, 2013, p 406–444

    Google Scholar 

  2. Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, and Y. He, 3D Printing of Ceramics: A Review, J. Eur. Ceram. Soc., 2019, 39, p 661–687. https://doi.org/10.1016/j.jeurceramsoc.2018.11.013

    Article  CAS  Google Scholar 

  3. V. Tomeckova and J.W. Halloran, Predictive Models for the Photopolymerization of Ceramic Suspensions, J. Eur. Ceram. Soc., 2010, 30(14), p 2833–2840. https://doi.org/10.1016/j.jeurceramsoc.2010.01.027

    Article  CAS  Google Scholar 

  4. J. Edgar and S. Tint, Additive Manufacturing Technologies: 3D Printing Rapid Prototyping, and Direct Digital Manufacturing, Johnson Matthey Tech., 2015, 59(3), p 193–198. https://doi.org/10.1595/205651315X688406

    Article  Google Scholar 

  5. K.V. Wong and A. Hernandez, A Review of Additive Manufacturing, Int. Scholar. Res. Not. Mech. Eng., 2012 https://doi.org/10.5402/2012/208760

    Article  Google Scholar 

  6. T.D. Ngo, A. Kashani, G. Imbalzano, K.T. Nguyen, and D. Hui, Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges, Compos. B Eng., 2018, 143, p 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  CAS  Google Scholar 

  7. B. Derby, Inkjet Printing Ceramics: From Drops to Solid, J. Eur. Ceram. Soc., 2011, 31(14), p 2543–2550. https://doi.org/10.1016/j.jeurceramsoc.2011.01.016

    Article  CAS  Google Scholar 

  8. J.A. Gonzalez, J. Mireles, Y. Lin, and R.B. Wicker, Characterization of Ceramic Components Fabricated Using Binder Jetting Additive Manufacturing Technology, Ceram. Int., 2016, 42(9), p 10559–10564. https://doi.org/10.1016/j.ceramint.2016.03.079

    Article  CAS  Google Scholar 

  9. J.P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, and M. Rombouts, Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting, Rapid Prototyp. J., 2005, 11(1), p 26–36. https://doi.org/10.1108/13552540510573365

    Article  Google Scholar 

  10. P.F.D.M. Dudek, FDM 3D Printing Technology in Manufacturing Composite Elements, Arch. Metall. Mater., 2013, 58(4), p 1415–1418. https://doi.org/10.2478/amm-2013-0186

    Article  CAS  Google Scholar 

  11. G. Rundle, A Revolution in the Making, Simon and Schuster, New York, 2014

    Google Scholar 

  12. M. Allahverdi, S.C. Danforth, M. Jafari, and A. Safari, Processing of Advanced Electroceramic Components by Fused Deposition Technique, J. Eur. Ceram. Soc., 2001, 21(10–11), p 1485–1490. https://doi.org/10.1016/S0955-2219(01)00047-4

    Article  CAS  Google Scholar 

  13. H. Yang, S. Yang, X. Chi, and J.R. Evans, Fine Ceramic Lattices Prepared by Extrusion Freeforming, J. Biomed. Mater. Res. B, 2006, 79(1), p 116–121. https://doi.org/10.1002/jbm.b.30520

    Article  CAS  Google Scholar 

  14. D.W. Hutmacher, T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, and K.C. Tan, Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling, Biomed. Mater. Res., 2001, 55(2), p 203–216. https://doi.org/10.1002/1097-4636(200105)55:2%3c203::AID-JBM1007%3e3.0.CO;2-7

    Article  CAS  Google Scholar 

  15. T. Cao, K.H. Ho, and S.H. Teoh, Scaffold Design and In Vitro Study of Osteochondral Coculture in a Three-Dimensional Porous Polycaprolactone Scaffold Fabricated by Fused Deposition Modeling, Tissue Eng., 2003, 9((4, Supplement 1)), p 103–112. https://doi.org/10.1089/10763270360697012

    Article  Google Scholar 

  16. M.W. Sa, B.N.B. Nguyen, R.A. Moriarty, T. Kamalitdinov, J.P. Fisher, and J.Y. Kim, Fabrication and Evaluation of 3D Printed BCP Scaffolds Reinforced with ZrO2 for Bone Tissue Applications, Biotechnol. Bioeng., 2018, 115(4), p 989–999. https://doi.org/10.1002/bit.26514

    Article  CAS  Google Scholar 

  17. J.A. Lewis and G.M. Gratson, Direct Writing in Three Dimensions, Mater. Today, 2004, 7(7–8), p 32–39. https://doi.org/10.1016/S1369-7021(04)00344-X

    Article  CAS  Google Scholar 

  18. E. Feilden, E.G.T. Blanca, F. Giuliani, E. Saiz, and L. Vandeperre, Robocasting of Structural Ceramic Parts with Hydrogel Inks, J. Eur. Ceram. Soc., 2016, 36(10), p 2525–2533. https://doi.org/10.1016/j.jeurceramsoc.2016.03.001

    Article  CAS  Google Scholar 

  19. S. Michna, W. Wu, and J.A. Lewis, Concentrated Hydroxyapatite Inks for Direct-Write Assembly of 3D Periodic Scaffolds, Biomaterials, 2005, 26(28), p 5632–5639. https://doi.org/10.1016/j.biomaterials.2005.02.040

    Article  CAS  Google Scholar 

  20. Y. Yang, X. Song, X. Li, Z. Chen, C. Zhou, Q. Zhou, and Y. Chen, Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures, Adv. Mater., 2018, 30(36), p 1706539. https://doi.org/10.1002/adma.201706539

    Article  CAS  Google Scholar 

  21. Y.S. Leung, T.H. Kwok, X. Li, Y. Yang, C.C. Wang, and Y. Chen, Challenges and Status on Design and Computation for Emerging Additive Manufacturing Technologies, J. Comput. Inf. Sci. Eng., 2019 https://doi.org/10.1115/1.4041913

    Article  Google Scholar 

  22. B. Mueller, Additive Manufacturing Technologies—Rapid Prototyping to Direct Digital Manufacturing, Assem. Autom., 2012 https://doi.org/10.1108/aa.2012.03332baa.010

    Article  Google Scholar 

  23. P.F. Jacobs, Stereolithography and Other RPM Technologies: From Rapid Prototyping to Rapid Tooling, Society of Manufacturing Engineers, 1995, p 59–79

  24. Y. Yang, X. Li, X. Zheng, Z. Chen, Q. Zhou, and Y. Chen, 3D-Printed Biomimetic Super-Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation, Adv. Mater., 2018, 30(9), p 1704912. https://doi.org/10.1002/adma.201704912

    Article  CAS  Google Scholar 

  25. X. Li and Y. Chen, Micro-Scale Feature Fabrication Using Immersed Surface Accumulation, J. Manuf. Process., 2017, 28, p 531–540. https://doi.org/10.1016/j.jmapro.2017.04.022

    Article  Google Scholar 

  26. H. Mao, Y.S. Leung, Y. Li, P. Hu, W. Wu, and Y. Chen, Multiscale Stereolithography Using Shaped Beams, J. Micro Nano-Manuf., 2017 https://doi.org/10.1115/1.4037832

    Article  Google Scholar 

  27. Y. Pan, C. Zhou, and Y. Chen, A Fast Mask Projection Stereolithography Process for Fabricating Digital Models in Minutes, ASME J. Manuf. Sci. Eng., 2012 https://doi.org/10.1115/1.4007465

    Article  Google Scholar 

  28. C. Zhou, Y. Chen, Z. Yang, and B. Khoshnevis, Digital Material Fabrication Using Mask-Image-Projection-Based Stereolithography, Rapid Prototyp. J., 2013, 19(3), p 153–165. https://doi.org/10.1108/13552541311312148

    Article  Google Scholar 

  29. C. Zhou and Y. Chen, Additive Manufacturing Based on Optimized Mask Video Projection for Improved Accuracy and Resolution, J. Manuf. Process., 2012, 14(2), p 107–118. https://doi.org/10.1016/j.jmapro.2011.10.002

    Article  CAS  Google Scholar 

  30. X. Li, H. Mao, Y. Pan, and Y. Chen, Mask Video Projection-Based Stereolithography with Continuous Resin Flow, ASME J. Manuf. Sci. Eng., 2019 https://doi.org/10.1115/1.4043765

    Article  Google Scholar 

  31. J.R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A.R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J.P. Rolland, A. Ermoshkin, and E.T. Samulski, Continuous Liquid Interface Production of 3D Objects, Science, 2015, 347(6228), p 1349–1352. https://doi.org/10.1126/science.aaa2397

    Article  CAS  Google Scholar 

  32. Y. Yang, X. Li, M. Chu, H. Sun, J. Jin, K. Yu, Q. Wang, Q. Zhou, and Y. Chen, Electrically Assisted 3D Printing of Nacre-Inspired Structures with Self-Sensing Capability, Sci. Adv., 2019, 5(4), p eaau9490. https://doi.org/10.1126/sciadv.aau9490

    Article  CAS  Google Scholar 

  33. X. Li, B. Xie, J. Jin, Y. Chai, and Y. Chen, 3D Printing Temporary Crown and Bridge by Temperature Controlled Mask Image Projection Stereolithography, Proc. Manuf., 2018, 26, p 1023–1033. https://doi.org/10.1016/j.promfg.2018.07.134

    Article  Google Scholar 

  34. A. Ovsianikov, B. Chichkov, P. Mente, N.A. Monteiro-Riviere, A. Doraiswamy, and R.J. Narayan, Two Photon Polymerization of Polymer-Ceramic Hybrid Materials for Transdermal Drug Delivery, Int. J. Appl. Ceram. Technol., 2007, 4(1), p 22–29. https://doi.org/10.1111/j.1744-7402.2007.02115.x

    Article  CAS  Google Scholar 

  35. X. Li, T. Baldacchin, X. Song, and Y. Chen, Multi-Scale Additive Manufacturing: An Investigation on Building Objects with Macro-, Micro- and Nano-Scales Features, in 11th International Conference on Micro Manufacturing, March 2016 (Irvine, CA), p 29–31

  36. J. Zhang, Y. Yang, B. Zhu, X. Li, J. Jin, Z. Chen, Y. Chen, and Q. Zhou, Multifocal Point Beam Forming by a Single Ultrasonic Transducer with 3D Printed Holograms, Appl. Phys. Lett., 2018, 113(24), p 243502. https://doi.org/10.1063/1.5058079

    Article  CAS  Google Scholar 

  37. P.J. Bartolo and J. Gaspar, Metal Filled Resin for Stereolithography Metal Part, CIRP Ann., 2008, 57(1), p 235–238. https://doi.org/10.1016/j.cirp.2008.03.124

    Article  Google Scholar 

  38. X. Li, Y. Yang, B. Xie, M. Chu, H. Sun, S. Hao, Y. Chen, and Y. Chen, 3D Printing of Flexible Liquid Sensor Based on Swelling Behavior of Hydrogel with Carbon Nanotubes, Adv. Mater. Technol., 2019, 4(2), p 1800476. https://doi.org/10.1002/admt.201800476

    Article  CAS  Google Scholar 

  39. X. Zheng, H. Lee, T.H. Weisgraber, M. Shusteff, J. DeOtte, E.B. Duoss, J.D. Kuntz, M.M. Biener, Q. Ge, J.A. Jackson, and S.O. Kucheyev, Ultralight, Ultrastiff Mechanical Metamaterials, Science, 2014, 344(6190), p 1373–1377. https://doi.org/10.1126/science.1252291

    Article  CAS  Google Scholar 

  40. S. Tarafder, V.K. Balla, N.M. Davies, A. Bandyopadhyay, and S. Bose, Microwave-Sintered 3D Printed Tricalcium Phosphate Scaffolds for Bone Tissue Engineering, J. Tissue Eng. Regen. Med., 2013, 7(8), p 631–641. https://doi.org/10.1002/term.555

    Article  CAS  Google Scholar 

  41. F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T.M. Nargang, C. Richter, D. Helmer, and B.E. Rapp, Three-Dimensional Printing of Transparent Fused Silica Glass, Nature, 2017, 544(7650), p 337. https://doi.org/10.1038/nature22061

    Article  CAS  Google Scholar 

  42. Y. Pan, X. Zhao, C. Zhou, and Y. Chen, Smooth Surface Fabrication in Mask Projection Based Stereolithography, J. Manuf. Process., 2012, 14(4), p 460–470. https://doi.org/10.1016/j.jmapro.2012.09.003

    Article  Google Scholar 

  43. M. Vaezi, H. Seitz, and S. Yang, A Review on 3D Micro-Additive Manufacturing Technologies, Int. J. Adv. Manuf. Technol., 2013, 67(5–8), p 1721–1754. https://doi.org/10.1007/s00170-012-4605-2

    Article  Google Scholar 

  44. F.P. Melchels, J. Feijen, and D.W. Grijpma, A Review on Stereolithography and Its Applications in Biomedical Engineering, Biomaterials, 2010, 31(24), p 6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050

    Article  CAS  Google Scholar 

  45. K.C. Wu, Parametric Study and Optimization of Ceramic Stereolithography, University of Michigan, Ann Arbor, 2005

    Google Scholar 

  46. G.A. Brady and J.W. Halloran, Stereolithography of Ceramic Suspensions, Rapid Prototyp. J., 1997, 3(2), p 61–65. https://doi.org/10.1108/13552549710176680

    Article  Google Scholar 

  47. X. Zhang, X.N. Jiang, and C. Sun, Micro-Stereolithography of Polymeric and Ceramic Microstructures, Sens. Actuators A Phys., 1999, 77(2), p 149–156. https://doi.org/10.1016/S0924-4247(99)00189-2

    Article  CAS  Google Scholar 

  48. X. Song, Y. Chen, T.W. Lee, S. Wu, and L. Cheng, Ceramic Fabrication Using Mask-Image-Projection-Based Stereolithography Integrated with Tape-Casting, J. Manuf. Process., 2015, 20, p 456–464. https://doi.org/10.1016/j.jmapro.2015.06.022

    Article  Google Scholar 

  49. I. Gibson, D. Rosen, and B. Stucker, Vat Photopolymerization Processes, Addit. Manuf. Technol., 2015 https://doi.org/10.1007/978-1-4939-2113-3_4

    Article  Google Scholar 

  50. Y.T. Chou, Y.T. Ko, and M.F. Yan, Fluid Flow Model for Ceramic Tape Casting, J. Am. Ceram. Soc., 1987, 70(10), p C–280. https://doi.org/10.1111/j.1151-2916.1987.tb04900.x

    Article  Google Scholar 

  51. J. Huang, T.H. Kwok, C. Zhou, and W. Xu, Surfel Convolutional Neural Network for Support Detection in Additive Manufacturing, Int. J. Adv. Manuf. Technol., 2019, 102, p 1–12.

    Google Scholar 

  52. J. Jin and Y. Chen, Highly Removable Water Support for Stereolithography, J. Manuf. Process., 2017, 28, p 541–549. https://doi.org/10.1016/j.jmapro.2017.04.023

    Article  Google Scholar 

  53. L. He and X. Song, Supportability of a High-Yield-Stress Slurry in a New Stereolithography-Based Ceramic Fabrication Process, JOM, 2018, 70(3), p 407–412. https://doi.org/10.1007/s11837-017-2657-3

    Article  Google Scholar 

  54. L. He, F. Fei, W. Wang, and X. Song, Support-Free Ceramic Stereolithography of Complex Overhanging Structures Based on an Elasto-Viscoplastic Suspension Feedstock, ACS Appl. Mater. Interfaces, 2019, 11, p 18849–18857. https://doi.org/10.1021/acsami.9b04205

    Article  CAS  Google Scholar 

  55. L. Xu, Q. Huang, A. Sabbaghi, and T. Dasgupta, Shape Deviation Modeling for Dimensional Quality Control in Additive Manufacturing, ASME 2013 International Mechanical Engineering Congress and Exposition, Vol 2A, American Society of Mechanical Engineers, Nov 2013, p V02AT02A018

  56. J.G. Zhou, D. Herscovici, and C.C. Chen, Parametric Process Optimization to Improve the Accuracy of Rapid Prototyped Stereolithography Parts, Int. J. Mach. Tools Manuf., 2000, 40(3), p 363–379. https://doi.org/10.1016/S0890-6955(99)00068-1

    Article  Google Scholar 

  57. K. Xu and Y. Chen, Photocuring Temperature Study for Curl Distortion Control in Projection- Based Stereolithography, J. Manuf. Sci. Eng., 2017 https://doi.org/10.1115/1.4034305

    Article  Google Scholar 

  58. H. Wu, Y. Cheng, W. Liu, R. He, M. Zhou, S. Wu, X. Song, and Y. Chen, Effect of the Particle Size and the Debinding Process on the Density of Alumina Ceramics Fabricated by 3D Printing Based on Stereolithography, Ceram. Int., 2016, 42(15), p 17290–17294. https://doi.org/10.1016/j.ceramint.2016.08.024

    Article  CAS  Google Scholar 

  59. M. Zhou, W. Liu, H. Wu, X. Song, Y. Chen, L. Cheng, F. He, S. Chen, and S. Wu, Preparation of a Defect-Free Alumina Cutting Tool via Additive Manufacturing Based on Stereolithography—Optimization of the Drying and Debinding Processes, Ceram. Int., 2016, 42(10), p 11598–11602. https://doi.org/10.1016/j.ceramint.2016.04.050

    Article  CAS  Google Scholar 

  60. Z. Chen, X. Song, L. Lei, X. Chen, C. Fei, C.T. Chiu, X. Qian, T. Ma, Y. Yang, K. Shung, and Y. Chen, 3D Printing of Piezoelectric Element for Energy Focusing and Ultrasonic Sensing, Nano Energy, 2016, 27, p 78–86. https://doi.org/10.1016/j.nanoen.2016.06.048

    Article  CAS  Google Scholar 

  61. R.V. Oliveira, V. Soldi, M.C. Fredel, and A.T. Pires, Ceramic Injection Moulding: Influence of Specimen Dimensions and Temperature on Solvent Debinding Kinetics, J. Mater. Process. Technol., 2005, 160(2), p 213–220. https://doi.org/10.1016/j.jmatprotec.2004.06.008

    Article  CAS  Google Scholar 

  62. Z. Xie, Y. Huang, J. Wu, and L. Zheng, Microwave Debinding of a Ceramic Injection Moulded Body, J. Mater. Sci. Lett., 1995, 14(11), p 794–795. https://doi.org/10.1007/BF00278131

    Article  CAS  Google Scholar 

  63. M.N. Rahaman, Ceramic Processing and Sintering, CRC Press, Boca Raton, 2003

    Google Scholar 

  64. W. Liu, H. Wu, M. Zhou, R. He, Q. Jiang, Z. Wu, Y. Cheng, X. Song, Y. Chen, and S. Wu, Fabrication of Fine-Grained Alumina Ceramics by a Novel Process Integrating Stereolithography and Liquid Precursor Infiltration Processing, Ceram. Int., 2016, 42(15), p 17736–17741. https://doi.org/10.1016/j.ceramint.2016.08.099

    Article  CAS  Google Scholar 

  65. X. Li, Y. Yuan et al., 3D Printing of Hydroxyapatite/Tricalcium Phosphate Scaffold with Hierarchical Porous Structure for Bone Regeneration, Bio-Des Manuf., 2020, 3(1), p 15–29. https://doi.org/10.1007/s42242-019-00056-5

    Article  CAS  Google Scholar 

  66. Y. Chen and C.C. Wang, Uniform Offsetting of Polygonal Model Based on Layered Depth-Normal Images, Comput. Aided Des., 2011, 43(1), p 31–46. https://doi.org/10.1016/j.cad.2010.09.002

    Article  Google Scholar 

  67. Z. Zhu, N. Anwer, Q. Huang, and L. Mathieu, Machine Learning in Tolerancing for Additive Manufacturing, CIRP Ann., 2018, 67(1), p 157–160. https://doi.org/10.1016/j.cirp.2018.04.119

    Article  Google Scholar 

  68. Q.Huang, 3D Printing Shrinkage Compensation Using Radial and Angular Layer Perimeter Point Information, U.S. Patent 9,886,526, 2018

  69. Q. Huang, H. Nouri, K. Xu, Y. Chen, S. Sosina, and T. Dasgupta, Statistical Predictive Modeling and Compensation of Geometric Deviations of Three-Dimensional Printed Products, J. Manuf. Sci. Eng., 2014 https://doi.org/10.1115/1.4028510

    Article  Google Scholar 

  70. K. Xu and Y. Chen, Mask Image Planning for Deformation Control in Projection-Based Stereolithography Process, J. Manuf. Sci. Eng., 2015 https://doi.org/10.1115/1.4029802

    Article  Google Scholar 

  71. K. Xu, T.H. Kwok, Z. Zhao, and Y. Chen, A Reverse Compensation Framework for Shape Deformation Control in Additive Manufacturing, J. Comput. Inf. Sci. Eng., 2017 https://doi.org/10.1115/1.4034874

    Article  Google Scholar 

  72. X. Song, Z. Zhang, Z. Chen, and Y. Chen, Porous Structure Fabrication Using a Stereolithography-Based Sugar Foaming Method, J. Manuf. Sci. Eng., 2017 https://doi.org/10.1115/1.4034666

    Article  Google Scholar 

  73. T. Thamaraiselvi and S. Rajeswari, Biological Evaluation of Bioceramic Materials—A Review, Carbon, 2004, 24(31), p 172.

    Google Scholar 

  74. A. El-Ghannam, Bone Reconstruction: From Bioceramics to Tissue Engineering, Expert Rev. Med. Dev., 2005, 2(1), p 87–101. https://doi.org/10.1586/17434440.2.1.87

    Article  Google Scholar 

  75. A. Macchetta, I.G. Turner, and C.R. Bowen, Fabrication of HA/TCP Scaffolds with a Graded and Porous Structure Using a Camphene-Based Freeze-Casting Method, Acta Biomater., 2009, 5(4), p 1319–1327. https://doi.org/10.1016/j.actbio.2008.11.009

    Article  CAS  Google Scholar 

  76. X. Miao, D.M. Tan, J. Li, Y. Xiao, and R. Crawford, Mechanical and Biological Properties of Hydroxyapatite/Tricalcium Phosphate Scaffolds Coated with Poly(Lactic-Co-Glycolic Acid), Acta Biomater., 2008, 4(3), p 638–645. https://doi.org/10.1016/j.actbio.2007.10.006

    Article  CAS  Google Scholar 

  77. A. Nakahira, T. Murakami, T. Onoki, T. Hashida, and K. Hosoi, Fabrication of Porous Hydroxyapatite Using Hydrothermal Hot Pressing and Post-Sintering, J. Am. Ceram. Soc., 2005, 88(5), p 1334–1336. https://doi.org/10.1111/j.1551-2916.2005.00238.x

    Article  CAS  Google Scholar 

  78. A. Rakovsky, I. Gotman, E. Rabkin, and E.Y. Gutmanas, β-TCP-Polylactide Composite Scaffolds with High Strength and Enhanced Permeability Prepared by a Modified Salt Leaching Method, J. Mech. Behav. Biomed., 2014, 32, p 89–98. https://doi.org/10.1016/j.jmbbm.2013.12.022

    Article  CAS  Google Scholar 

  79. R. Alluri, X. Song, S. Bougioukli, W. Pannell, V. Vakhshori, O. Sugiyama, A. Tang, S.H. Park, Y. Chen, and J.R. Lieberman, Regional Gene Therapy with 3D Printed Scaffolds to Heal Critical Sized Bone Defects in a Rat Model, J Biomed Mater Res A, 2019. https://doi.org/10.1002/jbm.a.36727

    Article  Google Scholar 

  80. H. Wu, W. Liu, R. He, Z. Wu, Q. Jiang, X. Song, Y. Chen, L. Cheng, and S. Wu, Fabrication of Dense Zirconia-Toughened Alumina Ceramics through a Stereolithography-Based Additive Manufacturing, Ceram. Int., 2017, 43(1), p 968–972. https://doi.org/10.1016/j.ceramint.2016.10.027

    Article  CAS  Google Scholar 

  81. X. Song, Z. Chen, L. Lei, K. Shung, Q. Zhou, and Y. Chen, Piezoelectric Component Fabrication Using Projection-Based Stereolithography of Barium Titanate Ceramic Suspensions, Rapid Prototyp. J., 2017, 23(1), p 44–53. https://doi.org/10.1108/RPJ-11-2015-0162

    Article  Google Scholar 

  82. Z. Chen, X. Qian, X. Song, Q. Jiang, R. Huang, Y. Yang, R. Li, K. Shung, Y. Chen, and Q. Zhou, Three-Dimensional Printed Piezoelectric Array for Improving Acoustic Field and Spatial Resolution in Medical Ultrasonic Imaging, Micromachines, 2019, 10(3), p 170. https://doi.org/10.3390/mi10030170

    Article  Google Scholar 

  83. Y.Z. Ji, Z. Wang, B. Wang, Y. Chen, T. Zhang, L.Q. Chen, X. Song, and L. Chen, Effect of Meso-Scale Geometry on Piezoelectric Performances of Additively Manufactured Flexible Polymer-Pb(ZrxTi1-x)O3 Composites, Adv. Eng. Mater., 2017, 19(6), p 1600803. https://doi.org/10.1002/adem.201600803

    Article  CAS  Google Scholar 

  84. Y. Yang, Z. Chen, X. Song, B. Zhu, T. Hsiai, P.I. Wu, R. Xiong, J. Shi, Y. Chen, Q. Zhou, and K.K. Shung, Three-Dimensional Printing of High Dielectric Capacitor Using Projection Based Stereolithography Method, Nano Energy, 2016, 22, p 414–421. https://doi.org/10.1016/j.nanoen.2016.02.045

    Article  CAS  Google Scholar 

  85. J. Luo, L.J. Gilbert, C. Qu, R.G. Landers, D.A. Bristow, and E.C. Kinzel, Additive Manufacturing of Transparent Soda-Lime Glass Using a Filament-Fed Process, J. Manuf. Sci. Eng., 2017 https://doi.org/10.1115/1.4035182

    Article  Google Scholar 

  86. P.T. Brun, C. Inamura, D. Lizardo et al., The Molten Glass Sewing Machine, Philos. Trans. R. Soc. A, 2017, 375(2093), p 20160156. https://doi.org/10.1098/rsta.2016.0156

    Article  Google Scholar 

  87. Z.C. Eckel, C. Zhou, J.H. Martin, A.J. Jacobsen, W.B. Carter, and T.A. Schaedler, Additive Manufacturing of Polymer-Derived Ceramics, Science, 2016, 351(6268), p 58–62. https://doi.org/10.1126/science.aad2688

    Article  CAS  Google Scholar 

  88. P. Greil, Polymer Derived Engineering Ceramics, Adv. Eng. Mater., 2000, 2(6), p 339–348.

    Article  CAS  Google Scholar 

  89. P. Colombo, Engineering Porosity in Polymer-Derived Ceramics, J. Eur. Ceram. Soc., 2008, 28(7), p 1389–1395. https://doi.org/10.1016/j.jeurceramsoc.2007.12.002

    Article  CAS  Google Scholar 

  90. E. Zanchetta, M. Cattaldo, G. Franchin, M. Schwentenwein, J. Homa, G. Brusatin, and P. Colombo, Stereolithography of SiOC Ceramic Microcomponents, Adv. Mater., 2016, 28(2), p 370–376. https://doi.org/10.1002/adma.201503470

    Article  CAS  Google Scholar 

  91. G. Mera, A. Navrotsky, S. Sen, H.J. Kleebe, and R. Riedel, Polymer-Derived SiCN and SiOC Ceramics—Structure and Energetics at the Nanoscale, J. Mater. Chem. A, 2013, 1(12), p 3826–3836. https://doi.org/10.1039/c2ta00727d

    Article  CAS  Google Scholar 

  92. J. Bauer, A. Schroer, R. Schwaiger, and O. Kraft, Approaching Theoretical Strength in Glassy Carbon Nanolattices, Nat. Mater., 2016, 15(4), p 438. https://doi.org/10.1038/nmat4561

    Article  CAS  Google Scholar 

  93. X. Song, Slurry Based Stereolithography: A Solid Freeform Fabrication Method of Ceramics and Composites, Doctoral dissertation, Ph.D. thesis, University of Southern California, Los Angeles, CA, 2016

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 ASM International. This article is reprinted with permission from Additive Manufacturing Processes, Vol 24, ASM Handbook, David L. Bourell, William Frazier, Howard Kuhn, and Mohsen Seifi, editors, ASM International, 2020, p 81–96. https://doi.org/10.31399/asm.hb.v24.a0006578.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, Y. Vat-Photopolymerization-Based Ceramic Manufacturing. J. of Materi Eng and Perform 30, 4819–4836 (2021). https://doi.org/10.1007/s11665-021-05920-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05920-z

Keywords

Navigation