Skip to main content
Log in

Evolution of Zr-Bearing Dispersoids during Homogenization and Their Effects on Hot Deformation and Recrystallization Resistance in Al-0.8%Mg-1.0%Si Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The precipitation behavior of Zr-bearing dispersoids in an Al-0.8%Mg-1.0%Si alloy was investigated for different homogenization treatments (450-550 °C). The effect on the recrystallization resistance of the alloy was also studied during post-deformation annealing. With an addition of 0.2 wt.% Zr, two different Zr-bearing dispersoids were observed depending on the homogenization conditions. Homogenization at 450 °C for 2 h resulted in the precipitation of fine and dense L12-Al3Zr dispersoids (8-10 nm), which were found to be coherent with the matrix. In contrast, extended homogenization times, such as 12 h at 450 °C, or increasing the homogenization temperature to 500-550 °C produced elongated DO22-(Al,Si)3Zr dispersoids with a larger size. During hot compression testing, the addition of 0.2 wt.% Zr combined with homogenization at 450 °C increased the high-temperature flow stress by 20% relative to the base alloy free of Zr, revealing their potential to inhibit dislocation motion and dynamic recovery. Both dispersoids were found to have positive impact on the retardation of recrystallization during post-deformation annealing, but the fine and coherent Al3Zr dispersoids were more effective than the coarse and incoherent (Al,Si)3Zr dispersoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Hirsch, Recent Development in Aluminium for Automotive Applications, Trans. Nonferrous Met. Soc. China, 2014, 24(7), p 1995–2002.

    Article  CAS  Google Scholar 

  2. J. Ren, Z. Chen, J. Peng, W. Ma and S.P. Ringer, An Initial Report on Achieving High Comprehensive Performance in an Al-Mg-Si Alloy via Novel Thermomechanical Processing, J. Alloys Compd., 2018, 764, p 679–683.

    Article  CAS  Google Scholar 

  3. R. Guemini, A. Boubertakh and G.W. Lorimer, Study of the Recrystallization Process of AlMgSi Alloys Containing Transition Elements, J. Alloys Compd., 2009, 486(1–2), p 451–457.

    Article  CAS  Google Scholar 

  4. Q. Dong, A. Howells, M.F. Gallerneault and V. Fallah, Precipitation-Induced Mitigation of Recrystallization in Ultra-Thin, Cold-Rolled AlScZrMn(Mg) Sheets at Brazing Temperatures: The Critical Effect of Alloy Composition and Thermal Processing Route, Acta Mater., 2020, 186, p 308–323.

    Article  CAS  Google Scholar 

  5. V.V. Zakharov, About Alloying of Aluminum Alloys with Transition Metals, Met. Sci. Heat Treat., 2017, 59(1–2), p 67–71.

    Article  CAS  Google Scholar 

  6. F. Hichem and G. Rebai, Study of Dispersoid Particles in Two Al–Mg–Si Aluminium Alloys and Their Effects on the Recrystallization, Appl. Phys. A, 2015, 119(1), p 285–289.

    Article  CAS  Google Scholar 

  7. F. Kahrıman and M. Zeren, The Effect of Zr on Aging Kinetics and Properties of As-Cast AA6082 Alloy, Int. J. Met., 2017, 11(2), p 216–222.

    Google Scholar 

  8. A.V. Mikhaylovskaya, A.G. Mochugovskiy, V.S. Levchenko, N.Y. Tabachkova, W. Mufalo and V.K. Portnoy, Precipitation Behavior of L12 Al3Zr Phase in Al-Mg-Zr Alloy, Mater. Charact., 2018, 139, p 30–37.

    Article  CAS  Google Scholar 

  9. Z. Guo, G. Zhao and X.-G. Chen, Effects of Two-Step Homogenization on Precipitation Behavior of Al3Zr Dispersoids and Recrystallization Resistance in 7150 Aluminum Alloy, Mater. Charact., 2015, 102, p 122–130.

    Article  CAS  Google Scholar 

  10. A.M. Cassell, J.D. Robson, C.P. Race, A. Eggeman, T. Hashimoto and M. Besel, Dispersoid Composition in Zirconium Containing Al-Zn-Mg-Cu (AA7010) Aluminium Alloy, Acta Mater., 2019, 169, p 135–146.

    Article  CAS  Google Scholar 

  11. C. Shi and X.-G. Chen, Effects of Zr and v Micro-Alloying on Activation Energy During Hot Deformation of 7150 Aluminum Alloys, Light Metals. Wiley, Hoboken NJ USA, 2015, p 163–167

    Google Scholar 

  12. F. Kahrıman and M. Zeren, Microstructural and Mechanical Characterization of Al-0.80Mg-0.85Si-0.3Zr Alloy, Arch. Foundry Eng., 2017, 17(4), p 73–78.

    Article  Google Scholar 

  13. L. Lityñska, D. Abou-Ras, G. Kostorz and J. Dutkiewicz, TEM and HREM Study of Al 3 Zr Precipitates in an Al-Mg-Si-Zr Alloy, J. Microsc., 2006, 223(3), p 182–184.

    Article  Google Scholar 

  14. Y. Himuro, K. Koyama and Y. Bekki, Precipitation Behaviour of Zirconium Compounds in Zr-Bearing Al-Mg-Si Alloy, Mater Sci Forum. Trans Tech Publ, Switzerland, 2006, p 501–506

    Google Scholar 

  15. F. Kahrıman and M. Zeren, Mechanical and Fractographical Characterization of Extruded Al-Mg-Si-Zr Alloys. In MATEC Web Conf., S. Pantelakis and S. Koubias, Eds., 2018, 188, p 02017.

  16. C. Poletti, M. Rodriguez-Hortalá, M. Hauser and C. Sommitsch, Microstructure Development in Hot Deformed AA6082, Mater. Sci. Eng. A, 2011, 528(6), p 2423–2430.

    Article  Google Scholar 

  17. S. Liu, J. Chen, W. Chai, Q. Wang, Z. Yang, L. Ye and J. Tang, Effects of Combined Additions of Mn and Zr on Dispersoid Formation and Recrystallization Behavior in Al-Zn-Mg Alloys, Metall. Mater. Trans. A, 2019, 50(10), p 4877–4890.

    Article  CAS  Google Scholar 

  18. A.R. Eivani, H. Ahmed, J. Zhou and J. Duszczyk, An Experimental and Theoretical Investigation of the Formation of Zr-Containing Dispersoids in Al–4.5Zn–1Mg Aluminum Alloy, Mater. Sci. Eng. A, 2010, 527(9), p 2418–2430.

    Article  Google Scholar 

  19. B. Morere, R. Shahani, C. Maurice and J. Driver, The Influence of Al3Zr Dispersoids on the Recrystallization of Hot-Deformed AA 7010 Alloys, Metall. Mater. Trans. A, 2001, 32(3), p 625–632.

    Article  Google Scholar 

  20. C. Shi and X.-G. Chen, Effect of Zr Addition on Hot Deformation Behavior and Microstructural Evolution of AA7150 Aluminum Alloy, Mater. Sci. Eng. A, 2014, 596, p 183–193.

    Article  CAS  Google Scholar 

  21. H. Li, Z. Gao, H. Yin, H. Jiang, X. Su and J. Bin, Effects of Er and Zr Additions on Precipitation and Recrystallization of Pure Aluminum, Scr. Mater., 2013, 68(1), p 59–62.

    Article  CAS  Google Scholar 

  22. Y. Meng, Z. Zhao and J. Cui, Effect of Minor Zr and Sc on Microstructures and Mechanical Properties of Al–Mg–Si–Cu–Cr–V Alloys, Trans. Nonferrous Met. Soc. China, 2013, 23(7), p 1882–1889.

    Article  CAS  Google Scholar 

  23. L. Zou, Q.-L. Pan, Y.-B. He, W.-J. Liang and C.-Z. Wang, Microstructures and Tensile Properties of Al-Zn-Cu-Mg-Zr Alloys Modified with Scandium, Mater. Sci., 2008, 44(1), p 120.

    Article  CAS  Google Scholar 

  24. Y. Birol, Effect of Cr and Zr on the Grain Structure of Extruded EN AW 6082 Alloy, Met. Mater. Int., 2014, 20(4), p 727–732.

    Article  CAS  Google Scholar 

  25. J.M. Cowley, Electron Microdiffraction, Advances in Electronics and Electron Physics, Springer Science & Business Media, 1978, p 1–53.

  26. F. Wang, D. Qiu, Z.-L. Liu, J.A. Taylor, M.A. Easton and M.-X. Zhang, The Grain Refinement Mechanism of Cast Aluminium by Zirconium, Acta Mater., 2013, 61(15), p 5636–5645.

    Article  CAS  Google Scholar 

  27. E. Clouet, J.M. Sanchez and C. Sigli, First-Principles Study of the Solubility of Zr in Al, Phys. Rev. B, 2002, 65(9), p 094105.

    Article  Google Scholar 

  28. S.N. Samaras and G.N. Haidemenopoulos, Modelling of Microsegregation and Homogenization of 6061 Extrudable Al-Alloy, J. Mater. Process. Technol., 2007, 194(1–3), p 63–73.

    Article  CAS  Google Scholar 

  29. H. Farh, K. Djemmal, R. Guemini and F. Serradj, Nucleation of Dispersoids Study in Some Al-Mg-Si Alloys, Ann. Chim. Sci. des Matériaux, 2010, 35(5), p 283–289.

    Article  CAS  Google Scholar 

  30. T. Sato, A. Kamio and G.W. Lorimer, Effects of Si and Ti Additions on the Nucleation and Phase Stability of the L12-Type Al3Zr Phase in Al-Zr Alloys, Mater. Sci. Forum, 1996, 217–222(2), p 895–900.

    Article  Google Scholar 

  31. M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei and H.R. Abedi, An Investigation into the Hot Deformation Characteristics of 7075 Aluminum Alloy, Mater. Des., 2011, 32(4), p 2339–2344.

    Article  CAS  Google Scholar 

  32. D. Li, D. Zhang, S. Liu, Z. Shan, X. Zhang, Q. Wang and S. Han, Dynamic Recrystallization Behavior of 7085 Aluminum Alloy during Hot Deformation, Trans. Nonferrous Met. Soc. China, 2016, 26(6), p 1491–1497.

    Article  CAS  Google Scholar 

  33. M. Shakiba, N. Parson and X.-G. Chen, Hot Deformation Behavior and Rate-Controlling Mechanism in Dilute Al–Fe–Si Alloys with Minor Additions of Mn and Cu, Mater. Sci. Eng. A, 2015, 636, p 572–581.

    Article  CAS  Google Scholar 

  34. C. Shi and X.-G. Chen, Effect of Vanadium on Hot Deformation and Microstructural Evolution of 7150 Aluminum Alloy, Mater. Sci. Eng. A, 2014, 613, p 91–102.

    Article  CAS  Google Scholar 

  35. Z. Jia, G. Hu, B. Forbord and J.K. Solberg, Effect of Homogenization and Alloying Elements on Recrystallization Resistance of Al–Zr–Mn Alloys, Mater. Sci. Eng. A, 2007, 444(1–2), p 284–290.

    Article  Google Scholar 

  36. Y. Wu, C. Liu, H. Liao, J. Jiang and A. Ma, Joint Effect of Micro-Sized Si Particles and Nano-Sized Dispersoids on the Flow Behavior and Dynamic Recrystallization of Near-Eutectic Al–Si Based alloys during Hot Compression, J. Alloys Compd., 2021, 856, p 158072.

    Article  CAS  Google Scholar 

  37. J. Lai, C. Shi and X.-G. Chen, Effects of V Addition on Recrystallization Resistance of 7150 Aluminum Alloy after Simulative Hot Deformation, Mater. Charact., 2014, 96, p 126–134.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) under the Grant No. CRDPJ 514651-17 and Rio Tinto Aluminium through the Research Chair in the Metallurgy of Aluminum Transformation at University of Quebec at Chicoutimi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Elasheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elasheri, A., Elgallad, E.M., Parson, N. et al. Evolution of Zr-Bearing Dispersoids during Homogenization and Their Effects on Hot Deformation and Recrystallization Resistance in Al-0.8%Mg-1.0%Si Alloy. J. of Materi Eng and Perform 30, 7851–7862 (2021). https://doi.org/10.1007/s11665-021-05917-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05917-8

Keywords

Navigation