Skip to main content
Log in

Flow Behavior Analysis and Flow Stress Modeling of Ti17 Alloy in \({\varvec{\beta}}\) Forging Process

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Isothermal compression tests are conducted using a thermomechanical simulator at a constant strain rate during deformation temperature range of 850 to 950 °C and strain rate range of 0.001-10 \({s}^{-1}\) to study the flow behavior of Ti17 alloy with initial basketweave microstructure in \(\beta \) forging process. The strain rate sensitivity exponent m and strain hardening exponent n are calculated, and the strain-compensated constitutive model of flow stress using hyperbolic sine-based Arrhenius model is constructed. The results show that the strain rate sensitivity exponent m is greater than 0.3 when the strain rate is low in the range of 0.001-0.01 \({s}^{-1}\), and reaches its maximum at 900 °C; the component is less than 0.3 at high strain rate range of 0.1-10 \({s}^{-1}\), and it is slightly lower at 850-900 °C compared with at 920-950 °C. The strain hardening exponent n monotonously decreases with the increase in true strain at strain rate of 0.001 \({s}^{-1}\), while for strain rate in the range of 0.01-10 \({s}^{-1}\), it decreases with the increase in strain when the true strain is less than 0.3 but does not show significant change when the true strain is greater than 0.3. The established strain-compensated flow stress constitutive model has high prediction accuracy with average absolute relative error (AARE) of 5.32% and correlation parameter R of 0.993. The model can thus be used to provide theoretical guidance for selecting \(\beta \) forging process parameters, and also provide the basic data for finite element simulation of \(\beta \) forging process of Ti17 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

References

  1. C. Leyns, M: Peters (Eds.), Titanium and Titanium Alloys, Wiley-VCH GmbH & Co. KgaA, Weinheim, 2003, p 333-350

  2. E. Ghasemi, A. Zarei-Hanzaki, E. Farabi, K. Tesar, A. Jager and M. Rezaee, Flow softening and dynamic recrystallization behavior of BT19 titanium alloy: a study using process map development, J. Alloys Compd., 2017, 695, p 1706–1718.

    Article  CAS  Google Scholar 

  3. R. Boyer, G. Welsch, E.W. Collings, in: S. Lampman (Ed.), Materials Properties Handbook: Titanium Alloys, first ed., ASM International Materials Park, 1994, p 453-464

  4. X.C. Yin, J.R. Liu, Q.J. Wang and L. Wang, Investigation of beta fleck formation in Ti-17 alloy by directional solidification method, journal of materials science and technology, J. Mater. Sci. Technol., 2020, 48, p 36–43.

    Article  Google Scholar 

  5. J. Luo, L. Li and M.Q. Li, The flow behavior and processing maps during the isothermal compression of Ti17 alloy, Mater. Sci. Eng. A, 2014, 606, p 165–174.

    Article  CAS  Google Scholar 

  6. Y. Alshammari, M. Jia, F. Yang and L. Bolzoni, The effect of α+ β forging on the mechanical properties and microstructure of binary titanium alloys produced via a cost-effective powder metallurgy route, Mater. Sci. Eng. A, 2020, 769, p 138496.

    Article  CAS  Google Scholar 

  7. Y.G. Zhou, W.D. Zeng and H.Q. Yu, A new high-temperature deformation strengthening and toughening process for titanium alloys, Mater, 1996, 221, p 58–62.

    Article  Google Scholar 

  8. H.M. Flower, Microstructural development in relation to hot working of titanium alloys, Mater. Sci. Tech., 1990, 6, p 1082–1092.

    Article  CAS  Google Scholar 

  9. Y. Combres and B. Champin, Titanium alloys processing: state of the art and prospects, Mater. Technol., 1991, 79, p 31–41.

    Article  CAS  Google Scholar 

  10. K.D. Lisa, T. Schmoelzer, K. Yan, M. Reid, M. Peel, R. Dippenaar and H. Clemens, In situ study of dynamic recrystallization and hot deformation behavior of a multiphase titanium aluminide alloy, J. Appl. Phys., 2009, 106, p 113526.

    Article  Google Scholar 

  11. J. Luo, P. Ye, W.C. Han and M.Q. Li, Microstructure evolution and its effect on flow stress of TC17 alloy during deformation in α+β two-phase region, Trans. Nonferrous Met. Soc. China, 2019, 29, p 1430–1438.

    Article  CAS  Google Scholar 

  12. J.L. Liu, W.D. Zeng, Y.J. Lai and Z.Q. Jia, Constitutive model of Ti17 titanium alloy with lamellar-type initial microstructure during hot deformation based on orthogonal analysis, Mater. Sci. Eng. A, 2014, 597, p 387–394.

    Article  CAS  Google Scholar 

  13. L. Li and M.Q. Li, Constitutive model and optimal processing parameters of TC17 alloy with a transformed microstructure via kinetic analysis and processing maps, Mater. Sci. Eng. A, 2017, 698, p 302–312.

    Article  CAS  Google Scholar 

  14. J.Z. Sun, M.Q. Li and H. Li, Deformation behavior of TC17 titanium alloy with basketweave microstructure during isothermal compression, J. Alloys Compd., 2018, 730, p 533–543.

    Article  CAS  Google Scholar 

  15. K. Yamanaka, H. Matsumoto and A. Chiba, A constitutive model and processing maps describing the high-temperature deformation behavior of Ti-17 Alloy in the β-Phase field, Adv. Eng. Mater., 2019, 21, p 1–8.

    Article  Google Scholar 

  16. Y.W. Xiao, Y.C. Lin, Y.Q. Jiang, X.Y. Zhang, G.D. Pang, D. Wang, and K.C. Zhou, A Dislocation Density-Based Model and Processing Maps of Ti-55511 Alloy with Bimodal Microstructures during Hot Compression in Α+β Region, Mater. Sci. Eng. A, Elsevier B.V., 2020, 790(June), p 139692

  17. A. Momeni, S.M. Abbasi, M. Morakabati and S.M. , Ghazi Mirsaed, flow softening behavior of Ti-13V-11Cr-3Al Beta ti alloy in double-hit hot compression tests, J. Mater. Res., 2016, 31(24), p 3900–3906.

    Article  CAS  Google Scholar 

  18. Y.C. Lin, Y.W. Xiao, Y.Q. Jiang, G.D. Pang, H. Bin Li, X.Y. Zhang, and K.C. Zhou, Spheroidization and Dynamic Recrystallization Mechanisms of Ti-55511 Alloy with Bimodal Microstructures during Hot Compression in Α+β Region, Mater. Sci. Eng. A, Elsevier B.V., 2020, 782(January), p 139282

  19. Y.C. Lin, J. Huang, D.G. He, X.Y. Zhang, Q. Wu, L.H. Wang, C. Chen, and K.C. Zhou, Phase Transformation and Dynamic Recrystallization Behaviors in a Ti55511 Titanium Alloy during Hot Compression, J. Alloys Compd., Elsevier B.V, 2019, 795, p 471–482

  20. Y.C. Lin, Y. Tang, Y.Q. Jiang, J. Chen, D. Wang and D.G. He, Precipitation of secondary phase and phase transformation behavior of a solution-treated Ti–6Al–4V alloy during high-temperature aging, Adv. Eng. Mater., 2020, 22(5), p 1–6.

    Article  Google Scholar 

  21. Xu. Jianwei, W. Zeng, D. Zhou, H. Ma, S. He and W. Chen, Analysis of flow softening during hot deformation of Ti-17 alloy with the lamellar structure, J. Alloys Compd., 2018, 767, p 285–292.

    Article  Google Scholar 

  22. Y.Q. Jiang, Y.C. Lin, G.Q. Wang, G.D. Pang, M.S. Chen, and Z.C. Huang, Microstructure Evolution and a Unified Constitutive Model for a Ti-55511 Alloy Deformed in β Region, J. Alloys Compd., Elsevier, 2021, 870, p 159534

  23. C. Poletti, L. Germain, F. Warchomicka, M. Dikovits and S. Mitsche, Unified description of the softening behavior of beta-metastable and alpha+beta titanium alloys during hot deformation, Mater. Sci. Eng. A, 2016, 651, p 280–290.

    Article  CAS  Google Scholar 

  24. V. V. Balasubrahmanyam, Y. V. R. K. Prasad, Deformation behaviour of beta titanium alloy Ti–10V–4.5Fe–1.5Al in hot upset forging, Mater. Sci. Eng. A, 2002, 336, p 150-158

  25. X.G. Fan, Y. Zhang, P.F. Gao, Z.N. Lei and M. Zhan, Deformation behavior and microstructure evolution during hot working of a coarse-grained Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy in beta phase field, Mater. Sci. Eng. A, 2017, 694, p 24–32.

    Article  CAS  Google Scholar 

  26. W.A. Backofen, I.R. Turner and D.H. Avery, Superplasticity in an Al-Zn Alloy, Trans. ASM, 1964, 57, p 980–990.

    Google Scholar 

  27. M.F. Ashby and R.A. Verrall, Diffusion-accommodated flow and superplasticity, Acta Metall., 1973, 21, p 149–163.

    Article  CAS  Google Scholar 

  28. A. Ball and M.M. Hutchison, Superplasticity in the aluminium-zinc eutectoid, Met. Sci. J., 1969, 3, p 1–7.

    Article  Google Scholar 

  29. A. Arieli and A.K. Mukherjee, A model for rate-controlling mechanism in superplasticity, Mater. Sci. Eng. A, 1980, 45, p 61–70.

    Article  Google Scholar 

  30. S.S. Sohn, D.G. Kim, Y.H. Jo, A.K. da Silva, W. Lu, A.J. Breen, B. Gault and D. Ponge, A physically-based constitutive model for hot deformation of Ti-10-2-3 alloy, Acta Metall., 2020, 194, p 106–117.

    CAS  Google Scholar 

  31. M.A. Nazzal, M.K. Khraisheh and F.K. Abu-Farha, The effect of strain rate sensitivity evolution on deformation stability during superplastic forming, J. Mater. Process. Tech., 2007, 191, p 189–192.

    Article  CAS  Google Scholar 

  32. Z.H. Xu, M.Q. Li and H. Li, Plastic flow behavior of superalloy GH696 during hot deformation, Trans. Nonferrous Met. Soc. China, 2016, 26, p 712–721.

    Article  CAS  Google Scholar 

  33. H.P. Stuwe and P. Les, Strain rate sensitivity of flow stress at large strains, Acta Metall., 1998, 46, p 6375–6380.

    CAS  Google Scholar 

  34. P. Ludwik, Elemente der technologischen mechanik, Springer-Verlag OHG, Berlin 1909, p 31-35, in German

  35. R. Evans and P. Scharning, Axisymmetric compression test and hot working properties of alloys, Mater. Sci. Tech., 2001, 17, p 995–1004.

    Article  CAS  Google Scholar 

  36. A. Malik, Y. Wang, H. Cheng, F. Nazeer, M.A. Khan and M. Wang, A physically-based constitutive model for hot deformation of Ti-10-2-3 alloy, Vacuum, 2019, 168, p 108810.

    Article  CAS  Google Scholar 

  37. C.M. Sellars and W.J. Mctrgart, On the mechanism of hot deformation, Acta Metall., 1966, 14, p 1136–1138.

    Article  CAS  Google Scholar 

  38. C. Zener and J.H. Hollomon, Effect of strain rate upon plastic flow of steel, J. Appl. Phys., 1944, 15, p 22–32.

    Article  Google Scholar 

  39. Z. Guo, A.P. Miodownik, N. Saunders, J-Ph. Schille, Influence of stacking-fault energy on high temperature creep of alpha titanium alloys, Scr. Mater., 2006, 54, p 2175–2178

  40. P. Wanjaraa, M. Jahazia, H. Monajatib, S. Yueb and J.-P. Immarigeona, Hot working behavior of near-alloy IMI834, Mater. Sci. Eng. A, 2005, 396, p 50–60.

    Article  Google Scholar 

  41. S. Wang, J.R. Luo, L.G. Hou, J.S. Zhang and L.Z. Zhuang, Physically based constitutive analysis and microstructural evolution of AA7050 aluminum alloy during hot compression, Mater. Des., 2016, 107, p 277–289.

    Article  CAS  Google Scholar 

  42. T. Furuhara, B. Poorganji, H. Abe and T. Maki, Dynamic recovery and recrystallization in titanium alloys by hot deformation, JOM, 2007, 59, p 64–67.

    Article  CAS  Google Scholar 

  43. D. Samantaray, C. Phaniraj, S. Mandal and A.K. Bhaduri, Strain dependent rate equation to predict elevated temperature flow behavior of modified 9Cr-1Mo (P91) steel, Mater. Sci. Eng. A, 2011, 528, p 7071–7077.

    Google Scholar 

  44. R. Bobbili, B. Venkata Ramudu and V. Madhu, A physically-based constitutive model for hot deformation of Ti-10-2-3 alloy, J. Alloys Compd., 2017, 6965, p 295–303.

    Article  Google Scholar 

  45. Y.C. Lin, M.S. Chen and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42(3), p 470–477.

    Article  CAS  Google Scholar 

  46. Y.C. Lin, J. Huang, H. Bin Li and D.D. Chen, Phase transformation and constitutive models of a hot compressed TC18 titanium alloy in the Α+β regime, Vacuum, Elsevier, 2018, 157, p 83–91.

    Article  CAS  Google Scholar 

  47. F. Pilehva, A. Zarei-Hanzaki, M. Ghambari and H.R. Abedi, Flow behavior modeling of a Ti-6Al-7Nb biomedical alloy during manufacturing at elevated temperatures, Mater. Des, Elsevier Ltd, 2013, 51, p 457–465.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuiyuan Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Wang, J. & Zhang, P. Flow Behavior Analysis and Flow Stress Modeling of Ti17 Alloy in \({\varvec{\beta}}\) Forging Process. J. of Materi Eng and Perform 30, 7668–7681 (2021). https://doi.org/10.1007/s11665-021-05910-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05910-1

Keywords

Navigation