Skip to main content
Log in

Study on the Adhesion Properties of Graphene and Hexagonal Boron Nitride Monolayers in Multilayered Micro-devices by Scratch Adhesion Test

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The interlayer adhesion in the multilayered micro-devices is of significant importance for their electronic properties. The scratch adhesion test is applied here using a micro-blade sliding under a linearly increased load, combined with optical and SEM visualization, to study the Al2O3/GR/SiO2/Si and Al2O3/hBN/GR/SiO2/Si stacks. The failure of the interlayers is determined by the critical load at which a sudden change in the coefficient of friction or a jump in the contact acoustic emission signal is observed during the scratch. It was found that the hBN/GR bilayer deposited on SiO2 enhanced significantly (~30%) the critical load of the GR/SiO2 interfacial failure compared to that of the GR monolayer. The adhesion at the upper Al2O3/hBN, hBN/GR and Al2O3/GR layers in the stack was improved by 11–15%, due to the thermal annealing, associated with enhanced solid-state diffusion at the interfaces. While the annealing has insufficient effect on the adhesion at the substrate SiO2/Si layers. The scratch adhesion test was proven here as a suitable fast technique for control on the adhesion between layers in the multilayered structures, in order to be proposed for quality control on the fabrication process and the operational performances of micro-/nano-devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Raza, Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications. Nanoscience and Technology, Springer, 2012, p 1–597

  2. K. Sato, H. Horibe, T. Shirai, Y. Hotta, H. Nakano, H. Nagai, K. Mitsuishi and K. Watari, Thermally Conductive Composite Films of Hexagonal Boron Nitride and Polyimide with Affinity-Enhanced Interfaces, J. Mater. Chem., 2010, 20, p 2749–2752.

    Article  CAS  Google Scholar 

  3. L. Boldrin, F. Scarpa, R. Chowdhury and S. Adhikari, Effective Mechanical Properties of Hexagonal Boron Nitride Nanosheets, Nanotechnology, 2011, 22, p 505702.

    Article  CAS  Google Scholar 

  4. B. Yu, W.Y. Xing, W.W. Guo, S.L. Qiu, X. Wang, S.M. Lo and Y. Hu, Thermal Exfoliation of Hexagonal Boron Nitride for Effective Enhancements on Thermal Stability, Flame Retardancy and Smoke Suppression of Epoxy Resin Nanocomposites via Sol-Gel Process, J. Mater. Chem. A, 2016, 4, p 7330–7340.

    Article  CAS  Google Scholar 

  5. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C.C. Tang and C.Y. Zhi, Boron Nitride Nanotubes and Nanosheets, ACS Nano, 2010, 4, p 2979–2993.

    Article  CAS  Google Scholar 

  6. E.L. Cussler, Diffusion Barriers, Diffus. Fundam., 2007, 6, p 1–72.

    Google Scholar 

  7. B. Bhushan, Micro/nanotribology and its Applications to Magnetic Storage Devices and MEMS, Tribol. Int., 1995, 28, p 85.

    Article  CAS  Google Scholar 

  8. B. Bhushan, Handbook of Micro/Nano Tribology, 2nd ed., 1999, p 880.

  9. R. Kaneko, Microtribology, Tribol. Int., 1995, 28, p 33–37.

    Article  Google Scholar 

  10. Y.Z. Hu and T.B. Ma, 3.12 - Tribology of Nanostructured Surfaces, Comprehensive Nanoscience and Technology, L.A. David, D.S. Gregory, P.W Gary, Ed., vol. 3, 2011, p 383–418.

  11. J.A. Williams and H.R. Le, Tribology and MEMS, J. Phys. D Appl. Phys., 2006, 39, p R201.

    Article  CAS  Google Scholar 

  12. S. Majumder, N.E. McGruer, and G.G. Adams, Adhesion and Contact Resistance in an Electrostatic MEMS Microswitch, 18th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2005, 2005, p 215–218.

  13. K. Komvopoulos, Surface Engineering and Microtribology for Microelectromechanical Systems, Wear, 1996, 200, p 305.

    Article  CAS  Google Scholar 

  14. R.H. Dauskardt, L. Michael, M. Qing and N. Krishna, Adhesion and Debonding of Multi-layer Thin Film Structures, Eng. Fract. Mech., 1998, 61(1), p 141–162.

    Article  Google Scholar 

  15. M.J. Cordill, D.F. Bahr, N.R. Moody and W.W. Gerberich, Recent Developments in Thin Film Adhesion Measurement, IEEE Trans. Device Mater. Reliab., 2004, 4(2), p 163–168.

    Article  CAS  Google Scholar 

  16. J. Chen and S.J. Bull, Approaches to Investigate Delamination and Interfacial Toughness in Coated Systems: An Overview, J. Phys. D Appl. Phys., 2010, 44(3), p 034001.

    Article  Google Scholar 

  17. A.A. Volinsky, N.R. Moody and W.W. Gerberich, Interfacial Toughness Measurements for Thin Films on Substrates, Acta Mater., 2002, 50(3), p 441–466.

    Article  CAS  Google Scholar 

  18. Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus” G171, ASTM International, ASTM, 2017.

  19. Standard Test Method For Adhesion Strength And Mechanical Failure Modes Of Ceramic Coatings By Quantitative Single Point Scratch Testing”, C1624-05, ASTM, 2015.

  20. S.J. Bull, Failure Modes in Scratch Adhesion Testing, Surf. Coat. Technol., 1991, 50(1), p 25–32.

    Article  CAS  Google Scholar 

  21. S.J. Bull, Failure Mode Maps in the Thin Film Scratch Adhesion Test, Tribol. Int., 1997, 30(7), p 491–498.

    Article  CAS  Google Scholar 

  22. B. Ollivier and A. Matthews, Adhesion of Diamond-like Carbon Films on Polymers: An Assessment of the Validity of the Scratch Test Technique Applied to Flexible Substrates, J. Adhes. Sci. Technol., 1994, 8(6), p 651–662.

    Article  CAS  Google Scholar 

  23. L. Václavek et al., Benefits of Use of Acoustic Emission in Scratch Testing, Acta Polytech. CTU Proc., 2020, 27, p 121–125.

    Article  Google Scholar 

  24. J. Tomaštík, R. Ctvrtlík, M. Dráb and J. Manák, On the Importance of Combined Scratch/acoustic Emission Test Evaluation: SiC and SiCN Thin Films Case Study, Coatings, 2018, 8(5), p 196.

    Article  Google Scholar 

  25. R. Ctvrtlík, J. Tomaštík, L. Václavek et al., High-resolution Acoustic Emission Monitoring in Nanomechanics, JOM, 2019, 71(10), p 3358–3367.

    Article  Google Scholar 

  26. J. Tomaštík, R. Ctvrtlík, T. Ingr et al., Effect of Nitrogen Doping and Temperature on Mechanical Durability of Silicon Carbide Thin Films, Sci. Rep., 2018 https://doi.org/10.1038/s41598-018-28704-3

    Article  Google Scholar 

  27. A. Gallego, J.F. Gil, E. Castro and R. Piotrkowski, Identification of Coating Damage Processes in Corroded Galvanized Steel by Acoustic Emission Wavelet Analysis, Surf. Coat. Technol., 2007, 201, p 4743–4756.

    Article  CAS  Google Scholar 

  28. Y.K. Ko, S. Lee, H.M. Lee et al., Enhanced Adhesion of Cu Film on a Low-K Material through Interfacial Medication, J. Korean Phys. Soc., 2005, 47, p 467–470.

    Google Scholar 

  29. W.Z. Li, Q.M. Wang, J. Gong et al., Inter-diffusion Reaction in the CrN Interlayer in the NiCrAlY/CrN/DSM11system during Thermal Treatment, Appl Surf Sci, 2009, 255, p 8190–8193.

    Article  CAS  Google Scholar 

  30. Z. Zhong, T. Hinoki, H.C. Jung et al., Microstructure and Mechanical Properties of Diffusion Bonded SiC/steel Joint using W/Ni Interlayer, Mater. Des., 2010, 31, p 1070–1076.

    Article  CAS  Google Scholar 

  31. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo and R.S. Ruoff, Large-area Synthesis of High-quality and Uniform Graphene Films on Copper Foils, Science, 2009, 324, p 1312–1314.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported from the Project H2020-SGA-FET-GRAPHENE-2017-785219 Graphene Core 2 and H2020-SGA-FET-GRAPHENE-2019-881603 Graphene Core 3. The authors E.I., T.B. and R.K. would like to acknowledge the contribution of the Project MIRACle No. BG05M2OP001-1.002-0011 and the DO-06-COST/11 Project supported by the BGNSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeni Ivanov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, E., Batakaliev, T., Kotsilkova, R. et al. Study on the Adhesion Properties of Graphene and Hexagonal Boron Nitride Monolayers in Multilayered Micro-devices by Scratch Adhesion Test. J. of Materi Eng and Perform 30, 5673–5681 (2021). https://doi.org/10.1007/s11665-021-05877-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05877-z

Keywords

Navigation