Skip to main content
Log in

Hot Salt Stress Corrosion Cracking Study of Selective Laser Melted Ti-6Al-4V Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The hot salt stress corrosion cracking (HSSCC) behavior of the selectively laser melted (SLM) Ti-6Al-4V alloy in the as-built and heat-treated conditions was studied at 300 and 400 °C. The HSSCC resistance of very susceptible as-built alloy can be significantly increased through annealing at 750 °C, losing only a small amount of ultimate tensile strength (UTS). The improvement in the HSSCC resistance is brought out by a transformation of martensite into lamellar α + β. The absence of equiaxed α found in the wrought alloy seems to help in increasing the HSSCC resistance of SLM Ti-6Al-4V alloy at high strength level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Chandramohan, S. Bhero, B.A. Obadele and P.A. Lobamba, Laser Additive Manufactured Ti-6Al-4V Alloy: Tribology and Corrosion Studies, Int. J. Adv. Manuf. Tech., 2017, 92, p 3051–3061.

    Article  Google Scholar 

  2. P. Chandramohan, S. Bhero, F. Varachia, B.A. Obadele and P.A. Olubambi, Laser Additive Manufactured Ti-6Al-4V Alloy: Heat Treatment Studies, T. Indian I. Metals, 2018, 71, p 579–587.

    Article  CAS  Google Scholar 

  3. R. Silverstein and D. Eliezer, Hydrogen Trapping in 3-D Printing (Additively Manufactured) Ti-6Al-4V Alloy, Mater. Charact., 2018, 144, p 297–304.

    Article  CAS  Google Scholar 

  4. J. Sun, X. Zhu, L. Qiu, F. Wang, Y. Yang and L. Guo, The Microstructure Transformation of Selective Laser Melted Ti-6Al-4V Alloy, Mater. Today Commun., 2019, 19, p 277–285.

    Article  CAS  Google Scholar 

  5. S. Liu and Y.C. Shin, Additive Manufacturing of Ti6Al4V Alloy: A Review, Mater. Des., 2019, 164, p 107552.

    Article  CAS  Google Scholar 

  6. C. Leyens and M. Peters, Titanium and Titanium Alloys-Fundamentals and Applications, Wiley , Weinheim, Germany, 2006, p 12

    Google Scholar 

  7. H. Galarraga, R.J. Warren, D.A. Lados, R.R. Dehoff, M.M. Kirka and P. Nandwana, Effects of Heat Treatments on Microstructure and Properties of Ti-6Al-4V ELI Alloy Fabricated by Electron Beam Melting (EBM), Mater. Sci. Eng. A, 2017, 685, p 417–428.

    Article  CAS  Google Scholar 

  8. X. Yan, S. Yin, C. Chen, C. Huang, R. Bolot, R. Lupoi, M. Kuang, W. Ma, C. Coddet, H. Liao and M. Liu, Effect of Heat Treatment on the Phase Transformation and Mechanical Properties of Ti6Al4V Fabricated by Selective Laser Melting, J. Alloys and Compd., 2018, 764, p 1056–1071.

    Article  CAS  Google Scholar 

  9. R.L. Kirchner and E.J. Ripling, Elevated Temperature Stress Corrosion of High Strength Sheet Materials in the Presence of Stress Concentrators, NASA First Interm Report N65-82069, 1964.

  10. M.W. Mahoney and A.S. Tetelman, The Effect of Microstructure on the Hot Salt Stress Corrosion Susceptibility of Titanium Alloys, Metall. Trans., 1976, 7A, p 1549–1558.

    Article  CAS  Google Scholar 

  11. J.D. Jackson and W.K. Boyd, The Stress-Corrosion and Accelerated Crack-Propagation Behaviour of Titanium and Titanium Alloys, DMIC Technical Note, Ohio, 1966.

    Google Scholar 

  12. H.R. Gray, Hot Salt Stress Corrosion Cracking of Titanium alloys: Generation of Hydrogen and Its Embrittling Effect, NASA Technical note TN D-5000, 1969.

  13. H.R. Gray and J.R. Johnston, Hot-Salt Stress-Corrosion of Titanium Alloy in a Dynamic Air Environment, Metall. Trans., 1970, 1, p 3101–3105.

    Article  CAS  Google Scholar 

  14. J.R. Myers and J.A. Hall, Hot-Salt Stress-Corrosion Cracking of Titanium Alloys: An Improved Model for the Mechanism, Corrosion-NACE, 1977, 33, p 252–257.

    Article  CAS  Google Scholar 

  15. R.K. Dinnappa, Hot Salt Stress Corrosion Cracking of a Titanium Alloy: The Phenomenon in View of Aero Gas Turbine Operating Condition, Key Eng. Mater., 1988, 20–28, p 2255–2271.

    Google Scholar 

  16. T. Chevrot, Pressure effect on hot salt stress corrosion cracking of titanium alloys, PhD Thesis, Cranfield University, 1994.

  17. S.P. Rideout, M.R. Louthan Jr. and C.L. Selby, Basic Mechanisms of Stress-Corrosion Cracking of Titanium, ASTM STP, 1966, 397, p 137–151.

    Google Scholar 

  18. G.J. Heimerl, and D.M. Royster, Hot Salt Stress Corrosion Cracking of Sheet Materials for a Supersonic Transport, NASA Technical note N68-25324, 1967.

  19. H.B. Dexter, Salt stress corrosion of residually stressed Ti-8Al-1Mo-1V alloy sheet after exposure at elevated temperatures, NASA TN D-3299, 1966.

  20. V.C. Petersen, Hot Salt Stress Corrosion of Titanium-A Review of the Problem and Methods for Improving the Resistance of Titanium, J. Metals, 1971, 23, p 40–47.

    CAS  Google Scholar 

  21. D. Sinigaglia, G. Taccani and B. Vicentini, Hot Salt Stess Corrosion Cracking of Titanium Alloys, Corros. Sci., 1978, 18, p 781–796.

    Article  CAS  Google Scholar 

  22. S. Joseph, T.C. Lindley, D. Dye and E.A. Saunders, The Mechanisms of Hot Salt Stress Corrosion Cracking in Titanium Alloys, Ti-6Al-2Sn-4Zr-6Mo, Corros. Sci., 2018, 134, p 169–178.

    Article  CAS  Google Scholar 

  23. E.A. Saunders, T.P. Chapman, A.R.M. Walker, T.C. Lindley, R.J. Chater, V.A. Vorontsov, D. Rugg and D. Day, Understanding the “Blue Spot”: Sodium Chloride Hot Salt Stress-Corrosion Cracking in Titanium-6246 during Fatigue Testing at Low Pressure, Eng. Fail. Anal., 2016, 61, p 2–20.

    Article  CAS  Google Scholar 

  24. R.G. Lingwall, and E.J. Ripling, Elevated Temperature Stress Corrosion of High Strength Sheet Materials in the Presence of Stress Concentrators, NASA Technical note CR-88979, 1967.

  25. M. Garfinkle, An electrochemical model for hot salt stress corrosion cracking of titanium alloys, Metall. Trans., 1973, 4, p 1677–1686.

    Article  CAS  Google Scholar 

  26. R.S. Ondrejcin, Hydrogen in Hot Salt Stress Corrosion Cracking of Titanium Aluminium Alloys, Metall. Trans., 1970, 1, p 3031–3036.

    Article  CAS  Google Scholar 

  27. M.D. Pustode and V.S. Raja, Hot Salt Stress Corrosion Cracking Behaviour of Ti-6242S Alloy, Metall. Trans. A, 2015, 46, p 6081–6089.

    Article  CAS  Google Scholar 

  28. M.D. Pustode, B. Dewangan, V.S. Raja, N. Paulose and N. Babu, Study of High Temperature Stress Corrosion Crack Initiation of Alloy IMI 834 by DC Potential drop Method, Corros. Sci. and Tech., 2016, 15, p 203–208.

    Article  CAS  Google Scholar 

  29. A.J. Hatch, H.W. Rosenberg and E.F. Erbin, Effect of Environment on Cracking of Titanium Alloys, ASTM STP, 1966, 397, p 122–136.

    Google Scholar 

  30. R.S. Ondrejcin, C.L. Selby, and S.P. Rideout, Role of Chloride in Hot Salt Stress Corrosion Cracking of Titanium Aluminium Alloys, NASA Technical note CR-87817, 1967.

  31. M. Encrenaz, P. Faure and J.A. Petit, Hot Salt Stress Corrosion Resistance of Ti-6246 Alloy, Corros. Sci., 1998, 40, p 939–950.

    Article  CAS  Google Scholar 

  32. M.D. Pustode, V.S. Raja and N. Paulose, The Stress-Corrosion Cracking Susceptibility of near-α Titanium Alloy IMI 834 in Presence of Hot Salt, Corros. Sci., 2014, 82, p 191–196.

    Article  CAS  Google Scholar 

  33. M.D. Pustode, B. Dewangan, V.S. Raja and N. Paulose, Effect of Long Term Exposure and Hydrogen Effects on HSSCC Behaviour of Titanium Alloy IMI 834, Mater. Des., 2015, 86, p 841–847.

    Article  CAS  Google Scholar 

  34. Standard test methods for tension testing of metallic materials, ASTM E8.

  35. A. Khorasani, I. Gibson, M. Goldberg and G. Littlefair, The Role of Different Annealing Heat Treatments on Mechanical Properties and Microstructure of Selective Laser Melted and Conventional Wrought Ti-6Al-4V, Rapid Prototyp. J., 2017, 23, p 295–304.

    Article  Google Scholar 

  36. M. Wang, Y. Wu, S. Lu, T. Chen, Y. Zhao, H. Chen and Z. Tang, Fabrication and Characterisation of Selective Laser Melting Printed Ti-6Al-4V Alloys Subjected to Heat Treatment for Customized Implants Design, Prog. Nat. Sci-Mater., 2016, 26, p 671–677.

    Article  CAS  Google Scholar 

  37. G. Lütjering and J.C. Williams, Titanium, Springer, New York, NY, 2003, p 206

    Book  Google Scholar 

  38. P. Yadroitsev, I. Krakhmalev and I. Yadroitsava, Selective Laser Melting of Ti6Al4V Alloy for Biomedical Applications: Temperature Monitoring and Microstructural Evolution, J. Alloys Compd., 2014, 583, p 404–409.

    Article  CAS  Google Scholar 

  39. B. Baufeld, E. Brandl and O. Biest, Wire Based Additive Layer Manufacturing: Comparison of Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Components Fabricated by Laser Beam Deposition and Shape Metal Deposition, J. Mater. Process Technol., 2011, 211, p 1146–1158.

    Article  CAS  Google Scholar 

  40. L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina and R.B. Wicker, Microstructure and Mechanical Behavior of Ti-6Al-4V Produced by Rapid-Layer Manufacturing, for Biomedical Applications, J. Mech. Behav. Biomed. Mater., 2009, 2(1), p 20–32.

    Article  CAS  Google Scholar 

  41. M. Niekter, P. Akerfeldt, R. Pederson and M.-L. Antti, Microstructural Characterisation of Ti-6Al-4V from Different Additive Manufacturing Processes, IOP Conf. Ser. Mater. Sci. Eng., 2017, 258, p 012007.

    Article  Google Scholar 

  42. T. Ahmed and H.J. Rack, Phase Transformation during Cooling in α + β Titanium Alloys, Mater. Sci. Eng. A, 1998, 243, p 206–211.

    Article  Google Scholar 

  43. F.R. Kaschel, R.K. Vijayaraghavan, A. Shmeliov, E.K. McCarthy, M. Canavan, P.J. McNally, D.P. Dowling, V. Nicolosi and M. Celikin, Mechanism of Stress Relaxation and Phase Transformation in Additively Manufactured Ti-6Al-4V Via in Situ High Temperature XRD and TEM Analysis, Acta. Mater., 2020, 188, p 720–732.

    Article  CAS  Google Scholar 

  44. M.D. Pustode, V.S. Raja and M. Tamilselvi, The Stress Corrosion Cracking Susceptibility of Ti-6Al-4V Alloy in Presence of Hot Salt, Conference Proceeding, C2013-2157, Corrosion 2013, Orlando, USA.

  45. D. Gu, W. Meiners, K. Wissenbach and R. Poprawe, Laser Additive Manufacturing of Metallic Components; Materials, Processes and Mechanisms, Int. Mater. Rev., 2012, 52, p 133–164.

    Article  Google Scholar 

  46. ISO 7539-7:2005, Corrosion of Metals and Alloys, Stress Corrosion Testing, Part-7: Method for Slow Strain rate Testing

Download references

Acknowledgments

The authors thank Dr. Rajkumar Singh, Senior Director, KCTI- Bharat Forge Ltd for providing the SLM manufactured Ti-6Al-4V alloy for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Raja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in theJournal of Materials Engineering and Performance on Additive Manufacturing. The issue was organized by Dr. William Frazier, Pilgrim Consulting, LLC; Mr. Rick Russell, NASA; Dr. Yan Lu, NIST; Dr. Brandon D. Ribic, America Makes; and Caroline Vail, NSWC Carderock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pustode, M.D., Chakraborty, P., Padekar, B.S. et al. Hot Salt Stress Corrosion Cracking Study of Selective Laser Melted Ti-6Al-4V Alloy. J. of Materi Eng and Perform 30, 5323–5332 (2021). https://doi.org/10.1007/s11665-021-05774-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05774-5

Keywords

Navigation