Skip to main content

Advertisement

Log in

Stable Cycling of Solid-State Lithium Metal Batteries at Room Temperature via Reducing Electrode/Electrolyte Interfacial Resistance

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Solid-state lithium batteries using solid-state electrolytes (SSE) improve both thermal stability and energy density compared with organic liquid electrolytes lithium-ion batteries (LIBs). However, their usage is still challenged by low lithium-ion conductivity and high interfacial resistance between SSE and electrodes, as well as difficulties running at room temperature (RT). Herein, we demonstrate an electrode/solid-state electrolyte interface, in which poly(ether-acrylate) (PEA) network was introduced on the surface of ceramic electrolytes via photo-polymerization, thus dramatically reducing the SSE/Li interfacial resistance from 4822 to 122 Ω cm2. As a result, the Li/Li cells can cycle over 500 h at 0.3 mA cm−2, LiFePO4/Li delivers 200 cycles with capacity retention of 91.1% at RT, respectively. This research provides a method to improve the interface contact between SSE and electrodes, and offers possibilities for application of solid-state Li metal batteries under ambient condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.S. Whittingham, Ultimate Limits to Intercalation Reactions for Lithium Batteries, Chem. Rev., 2014, 114, p 11414–11443.

    Article  CAS  Google Scholar 

  2. J. Qian, L. Liu, J. Yang, S. Li, X. Wang, H.L. Zhuang and Y. Lu, Electrochemical Surface Passivation of LiCoO2 Particles at Ultrahigh Voltage and its Applications in Lithium-Based Batteries, Nat. Commun., 2018, 9, p p4918.

    Article  Google Scholar 

  3. F. Zheng, M. Kotobuki, S. Song, M.O. Lai and L. Lu, Review on Solid Electrolytes for all-Solid-State Lithium-Ion Batteries, J. Power Sources, 2018, 389, p 198–213.

    Article  CAS  Google Scholar 

  4. E.A. Olivetti, G. Ceder, G.G. Gaustad and X. Fu, Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals, Joule, 2017, 1, p 229–243.

    Article  Google Scholar 

  5. M. Li, J. Lu, Z. Chen and K. Amine, 30 Years of Lithium-Ion Batteries, Adv. Mater., 2018, 30, p p1800561.

    Article  Google Scholar 

  6. D. Lin, Y. Liu and Y. Cui, Reviving the Lithium Metal Anode for High-Energy Batteries, Nat. Nanotechnol., 2017, 12, p p194.

    Article  Google Scholar 

  7. J. Zheng, M.H. Engelhard, D. Mei, S. Jiao, B.J. Polzin, J.-G. Zhang and W. Xu, Electrolyte Additive Enabled Fast Charging and Stable Cycling Lithium Metal Batteries, Nat. Energy, 2017, 2, p p17012.

    Article  Google Scholar 

  8. C. Yang, L. Zhang, B. Liu, S. Xu, T. Hamann, D. McOwen, J. Dai, W. Luo, Y. Gong and E.D. Wachsman, Continuous Plating/Stripping Behavior of Solid-State Lithium Metal Anode in a 3D Ion-Conductive Framework, Proc. Natl. Acad. Sci., 2018, 115, p 3770–3775.

    Article  CAS  Google Scholar 

  9. S. Jiao, X. Ren, R. Cao, M.H. Engelhard, Y. Liu, D. Hu, D. Mei, J. Zheng, W. Zhao and Q. Li, Stable Cycling of High-Voltage Lithium Metal Batteries in Ether Electrolytes, Nat. Energy, 2018, 3, p p739.

    Article  Google Scholar 

  10. E. Markevich, G. Salitra and D. Aurbach, Fluoroethylene Carbonate as an Important Component for the Formation of an Effective Solid Electrolyte Interphase on Anodes and Cathodes for Advanced Li-Ion Batteries, ACS Energy Lett., 2017, 2, p 1337–1345.

    Article  CAS  Google Scholar 

  11. Y. Gu, W.-W. Wang, Y.-J. Li, Q.-H. Wu, S. Tang, J.-W. Yan, M.-S. Zheng, D.-Y. Wu, C.-H. Fan and W.-Q. Hu, Designable Ultra-Smooth Ultra-Thin Solid-Electrolyte Interphases of Three Alkali Metal Anodes, Nat. Commun., 2018, 9, p p1339.

    Article  Google Scholar 

  12. Y. Liu, D. Lin, P.Y. Yuen, K. Liu, J. Xie, R.H. Dauskardt and Y. Cui, An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes, Adv. Mater., 2017, 29, p p1605531.

    Article  Google Scholar 

  13. Y. Liu, D. Lin, Z. Liang, J. Zhao, K. Yan and Y. Cui, Lithium-Coated Polymeric Matrix as a Minimum Volume-Change and Dendrite-Free Lithium Metal Anode, Nat. Commun., 2016, 7, p p10992.

    Article  Google Scholar 

  14. F. Zhou, Z. Li, Y.-Y. Lu, B. Shen, Y. Guan, X.-X. Wang, Y.-C. Yin, B.-S. Zhu, L.-L. Lu and Y. Ni, Diatomite Derived Hierarchical Hybrid Anode for High Performance all-Solid-State Lithium Metal Batteries, Nat. Commun., 2019, 10, p p2482.

    Article  Google Scholar 

  15. W. Luo, Y. Gong, Y. Zhu, Y. Li, Y. Yao, Y. Zhang, K. Fu, G. Pastel, C.F. Lin and Y. Mo, Reducing Interfacial Resistance Between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer, Adv. Mater., 2017, 29, p p1606042.

    Article  Google Scholar 

  16. S.A. Pervez, M.A. Cambaz, V. Thangadurai and M. Fichtner, Interface in Solid-State Li Battery: Challenges, ACS Applied Materials & Interfaces, Progress and Outlook, 2019.

    Google Scholar 

  17. X. Chen, W. He, L.-X. Ding, S. Wang and H. Wang, Enhancing Interfacial Contact in all Solid State Batteries with a Cathode-Supported Solid Electrolyte Membrane Framework, Energy and Environ. Sci., 2019 https://doi.org/10.1039/C8EE02617C

    Article  Google Scholar 

  18. Cheng Q, Li A, Li N, Li S, Zangiabadi A, Li T-D, Huang W, Li A C, Jin T, Song Q Boron Nitride-Based Nanocomposite Coating for Stabilizing Solid Electrolyte/Anode Interface in Lithium Metal Batteries; 2542-4351; Brookhaven National Lab.(BNL), Upton, NY (United States): (2019)

  19. M.D. Tikekar, S. Choudhury, Z. Tu and L.A. Archer, Design Principles for Electrolytes and Interfaces for Stable Lithium-Metal Batteries, Nat. Energy, 2016, 1, p p16114.

    Article  Google Scholar 

  20. L. Porz, T. Swamy, B.W. Sheldon, D. Rettenwander, T. Frömling, H.L. Thaman, S. Berendts, R. Uecker, W.C. Carter and Y.M. Chiang, Mechanism of Lithium Metal Penetration Through Inorganic Solid Electrolytes, Adv. Energy Mater., 2017, 7, p p1701003.

    Article  Google Scholar 

  21. F. Han, A.S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D.N. Leonard, N.J. Dudney, H. Wang and C. Wang, High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nat. Energy, 2019 https://doi.org/10.1038/s41560-018-0312-z

    Article  Google Scholar 

  22. C.-L. Tsai, V. Roddatis, C.V. Chandran, Q. Ma, S. Uhlenbruck, M. Bram, P. Heitjans and O. Guillon, Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention, ACS Appl. Mater. Interfaces., 2016, 8, p 10617–10626.

    Article  CAS  Google Scholar 

  23. J. Van Den Broek, S. Afyon and J.L. Rupp, Interface-Engineered All-Solid-State Li-Ion Batteries Based on Garnet-Type Fast Li+ Conductors, Adv. Energy Mater., 2016, 6, p p1600736.

    Article  Google Scholar 

  24. T. Liu, Y. Ren, Y. Shen, S.-X. Zhao, Y. Lin and C.-W. Nan, Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6. 75La3Zr1. 75Ta0. 25O12 electrolyte: Interfacial resistance, J. Power Sources, 2016 https://doi.org/10.1016/j.jpowsour.2016.05.111

    Article  Google Scholar 

  25. K. Park, B.-C. Yu, J.-W. Jung, Y. Li, W. Zhou, H. Gao, S. Son and J.B. Goodenough, Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12, Chem. Mater., 2016, 28, p 8051–8059.

    Article  CAS  Google Scholar 

  26. T. Liu, Y. Zhang, X. Zhang, L. Wang, S.-X. Zhao, Y.-H. Lin, Y. Shen, J. Luo, L. Li and C.-W. Nan, Enhanced Electrochemical Performance of Bulk Type Oxide Ceramic Lithium Batteries Enabled by Interface Modification, J. Mater. Chem. A, 2018, 6, p 4649–4657.

    Article  CAS  Google Scholar 

  27. K.K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S.D. Lacey and J. Dai, Toward Garnet Electrolyte–Based Li Metal Batteries: an Ultrathin, Highly Effective, Artificial Solid-State Electrolyte/Metallic Li Interface, Sci. Adv., 2017 https://doi.org/10.1126/sciadv.1601659

    Article  Google Scholar 

  28. F. Ma, E. Zhao, S. Zhu, W. Yan, D. Sun, Y. Jin and C. Nan, Preparation and Evaluation of High Lithium Ion Conductivity Li1.3 Al0.3 Ti1.7 (PO4)3 Solid Electrolyte Obtained Using a New Solution Method, Solid State Ionics, 2016 https://doi.org/10.1016/j.ssi.2016.07.010

    Article  Google Scholar 

  29. Y. Li, W. Zhou, X. Chen, X. Lu, Z. Cui, S. Xin, L. Xue, Q. Jia and J.B. Goodenough, Mastering the Interface for Advanced all-Solid-State Lithium Rechargeable Batteries, Proc Natl Acad Sci USA, 2016, 113, p 13313–13317.

    Article  CAS  Google Scholar 

  30. C.-Z. Zhao, B.-C. Zhao, C. Yan, X.-Q. Zhang, J.-Q. Huang, Y. Mo, X. Xu, H. Li and Q. Zhang, Liquid Phase Therapy to Solid Electrolyte–Electrode Interface in Solid-State Li Metal Batteries: a Review, Energy Storage Mater., 2020, 24, p 75–84.

    Article  Google Scholar 

  31. Y. Xiao and Y. Yin, Hybrid LSTM Neural Network for Short-Term Traffic Flow Prediction, Information, 2019 https://doi.org/10.3390/info10030105

    Article  Google Scholar 

  32. W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram and J.B. Goodenough, Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte, J. Am. Chem. Soc., 2016, 138, p 9385–9388.

    Article  CAS  Google Scholar 

  33. Y. Liu, Q. Sun, Y. Zhao, B. Wang, P. Kaghazchi, K.R. Adair, R. Li, C. Zhang, J. Liu, L.Y. Kuo, Y. Hu, T.K. Sham, L. Zhang, R. Yang, S. Lu, X. Song and X. Sun, Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition, ACS Appl Mater Interfaces, 2018, 10, p 31240–31248.

    Article  CAS  Google Scholar 

  34. J.Y. Liang, X.X. Zeng, X.D. Zhang, T.T. Zuo, M. Yan, Y.X. Yin, J.L. Shi, X.W. Wu, Y.G. Guo and L.J. Wan, Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries, J Am Chem Soc, 2019, 141, p 9165–9169.

    Article  Google Scholar 

  35. X.-X. Zeng, Y.-X. Yin, N.-W. Li, W.-C. Du, Y.-G. Guo and L.-J. Wan, Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries, J. Am. Chem. Soc., 2016, 138, p 15825–15828.

    Article  CAS  Google Scholar 

  36. S. Duluard, A. Paillassa, L. Puech, P. Vinatier, V. Turq, P. Rozier, P. Lenormand, P.-L. Taberna, P. Simon and F. Ansart, Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7 (PO4)3 obtained via solution chemistry, J. Eur. Ceram. Soc., 2013 https://doi.org/10.1016/j.jeurceramsoc.2012.08.005

    Article  Google Scholar 

  37. S.D. Jackman and R.A. Cutler, Effect of Microcracking on Ionic Conductivity in LATP, J. Power Sources, 2012, 218, p 65–72.

    Article  CAS  Google Scholar 

  38. H. Morimoto, H. Awano, J. Terashima, Y. Shindo, S. Nakanishi, N. Ito, K. Ishikawa and S.I. Tobishima, Preparation of Lithium Ion Conducting Solid Electrolyte of NASICON-type Li1+xAlxTi2−x(PO4)3 (x= 0.3) Obtained by Using the Mechanochemical Method and its Application as Surface Modification Materials of LiCoO2 Cathode for Lithium Cell, J. Power Sources, 2013 https://doi.org/10.1016/j.jpowsour.2013.05.039

    Article  Google Scholar 

  39. Q. Song, A. Li, L. Shi, C. Qian, T.G. Feric, Y. Fu, H. Zhang, Z. Li, P. Wang, Z. Li, H. Zhai, X. Wang, M. Dontigny, K. Zaghib, A.-H. Park, K. Myers, X. Chuan and Y. Yang, Thermally Stable, Nano-Porous and Eco-friendly Sodium Alginate/Attapulgite Separator for lithium-ion Batteries, Energy Storage Mater., 2019, 22, p 48–56.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from National Natural Science Foundation of China (No. 51774016 and No.52074015) and Test Fund of Peking University (0000012321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuyun Chuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 4441kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Chuan, X., Yang, Y. et al. Stable Cycling of Solid-State Lithium Metal Batteries at Room Temperature via Reducing Electrode/Electrolyte Interfacial Resistance. J. of Materi Eng and Perform 30, 4543–4551 (2021). https://doi.org/10.1007/s11665-021-05748-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05748-7

Keywords

Navigation