Skip to main content
Log in

Failure Analysis and Finite Element Simulation on Service Conditions of SUS304 Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The purpose of this paper was to study the failure behavior of SUS304 stainless steel in view of cooling water leakage in actual service conditions. The temperature field and thermal stress distribution in the thickness direction of SUS304 stainless steel under actual service conditions were further analyzed by the finite element method. The results show that chromium-rich carbides are precipitated at the grain boundaries, which may cause intergranular corrosion. The morphology of the corrosion grooves is ditch structure, which has high intergranular corrosion susceptibility. The expansion direction of the cracks is from the contact surface of cooling water to the high-temperature contact surface. Fracture is characterized by a river pattern and rock candy pattern. Fracture morphology is characterized by brittle rupture. The Cl contained in the corrosion products comes from the circulating cooling water. XRD patterns show that the corrosion products are composed of CaCO3 (the high-temperature contact surface) and Fe3O4 (the contact surface of cooling water), respectively. EDS results of corrosion products are consistent with XRD results. The results of finite element simulation show that the temperature field along the thickness direction of SUS304 stainless steel plate is in the range of 436.6-450 °C. The peak of thermal stress is located in the middle of cross section. The cause of failure is acceleration of the initiation and extension of the cracks under the combined action of chloride ion stress corrosion, intergranular corrosion, and thermal stress. The form of crack fracture is mixture of transgranular and intergranular fracture, mainly transgranular fracture, which belongs to typical chloride ion stress corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. K.H. Lo, C.H. Shek and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R, 2009, 65, p 39–104.

    Article  Google Scholar 

  2. M. Szala, K. Beer-Lech and M. Walczak, A Study on the Corrosion of Stainless Steel Floor Drains in an Indoor Swimming Pool, Eng. Fail. Anal., 2017, 77, p 31–38.

    Article  CAS  Google Scholar 

  3. F. Iacoviello, V. Di Cocco and L. D’Agostino, Analysis of the Intergranular Corrosion Susceptibility in Stainless Steel by Means of Potentiostatic Reactivation Tests, Proc. Struct. Integr., 2017, 3, p 269–275.

    Google Scholar 

  4. E. Mohammadi Zahrani, Premature Failure of Grade-316Ti Stainless Steel Tubing in a Boiler Feed-Water Heat Exchanger in a Steel Complex, J. Failure Anal. Prevent., 2021, 21, p 61–73.

    Article  Google Scholar 

  5. H. Sahlaoui, K. Makhlouf, H. Sidhom and J. Philibert, Effects of Ageing Conditions on the Precipitates Evolution, Chromium Depletion and Intergranular Corrosion Susceptibility of AISI 316l: Experimental and Modeling Results, Mater. Sci. Eng., A, 2004, 372, p 98–108.

    Article  Google Scholar 

  6. Y. Gao, C.L. Zhang, X.H. Xiong, Z.H. Zheng and M. Zhu, Intergranular Corrosion Susceptibility of a Novel Super304H Stainless Steel, Eng. Fail. Anal., 2012, 24, p 26–32.

    Article  CAS  Google Scholar 

  7. D.T. Spencer, M.R. Edwards, M.R. Wenman, C. Tsitsios, G.G. Scatigno and P.R. Chard-Tuckey, The Initiation and Propagation of Chloride-Induced Transgranular Stress-Corrosion Cracking (TGSCC) of 304L Austenitic Stainless Steel Under Atmospheric Conditions, Corros. Sci., 2014, 88, p 76–88.

    Article  CAS  Google Scholar 

  8. R. Schoell, L. Xi, Y.C. Zhao, X. Wu, Z.Z. Yu, P. Kenesei, J. Almer, Z. Shayer, D. Kaoumi, In Situ Synchrotron X-Ray Tomography of 304 Stainless Steels Undergoing Chlorine-Induced Stress Corrosion Cracking, Corrosion Science, 2020, 170, Article 108687.

  9. T.M. Ahmed, A. Alfantazi, J. Budac and G. Freeman, Failure Analysis of 316L Stainless Steel Tubing of the High-Pressure Still Condenser, Eng. Fail. Anal., 2009, 16, p 1432–1441.

    Article  CAS  Google Scholar 

  10. S.J. Pawel, J.R. DiStefano and E.T. Manneschmidt, Thermal Gradient Mass Transfer of Type 316L Stainless Steel and Alloy 718 in Flowing Mercury, J. Nucl. Mater., 2001, 296, p 210–218.

    Article  CAS  Google Scholar 

  11. G. Dini, M.H. Bina, S.M.M. Vaghefi, K. Raeissi, M. Safaei-Rad and M. Navabi, Failure of a Continuous-Annealing Furnace Roller at Mobarakeh Steel Company, Eng. Fail. Anal., 2008, 15, p 856–862.

    Article  Google Scholar 

  12. M.J. Zhan, G.F. Sun, Z.D. Wang, X.T. Shen, Y. Yan and Z.H. Ni, Numerical and Experimental Investigation on Laser Metal Deposition as Repair Technology for 316L Stainless Steel, Opt. Laser Technol., 2019, 118, p 84–92.

    Article  CAS  Google Scholar 

  13. J.S. Lu, H.F. Xuan and J. Xue, Failure Analysis of a 304 Stainless Steel Flange, Advanced Materials Research, 2015, 1120–1121, p 1024–1028.

    Article  Google Scholar 

  14. Standard practice for detecting susceptibility to intergranular attack in austenitic stainless steels, American Society for Testing and Materials, ASTM A262(2015).

  15. E. Mohammadi Zahrani, A. Saatchi, A. Alfantazi, Pitting of 316L Stainless Steel in Flare Piping of a Petrochemical Plant, Engineering Failure Analysis, 2010, 17, p 810-817.

  16. D. Deng and H. Murakawa, Numerical Simulation of Temperature Field and Residual Stress in Multi-Pass Welds In Stainless Steel Pipe and Comparison with Experimental Measurements, Comput. Mater. Sci., 2006, 37, p 269–277.

    Article  CAS  Google Scholar 

  17. D. Deng, H. Murakawa and W. Liang, Numerical and Experimental Investigations on Welding Residual Stress in Multi-Pass Butt-Welded Austenitic Stainless Steel Pipe, Comput. Mater. Sci., 2008, 42(2), p 234–244.

    Article  CAS  Google Scholar 

  18. X.Y. Zhong, S.C. Bali and T. Shoji, Effects of Dissolved Hydrogen and Surface Condition on the Intergranular Stress Corrosion Cracking Initiation and Short Crack Growth Behavior of Non-Sensitized 316 Stainless Steel in Simulated PWR Primary Water, Corros. Sci., 2017, 118, p 143–157.

    Article  CAS  Google Scholar 

  19. C. García, F. MartíN, P.D. Tiedra, J.A. Heredero and M.L. Aparicio, Effects of Prior Cold Work and Sensitization Heat Treatment on Chloride Stress Corrosion Cracking in Type 304 Stainless Steels, Corros. Sci., 2001, 43(43), p 1519–1539.

    Article  Google Scholar 

  20. Standard test methods for determining average grain size, American Society for Testing and Materials, ASTM E112(2013).

  21. K. Kaneko, T. Fukunaga, K. Yamada, N. Nakada, M. Kikuchi, Z. Saghi, J.S. Barnard and P.A. Midgley, Formation of M23C6-Type Precipitates and Chromium-Depleted Zones in Austenite Stainless Steel, Scripta Mater., 2011, 65(5), p 509–512.

    Article  CAS  Google Scholar 

  22. X.W. Zhang, J.Q. Tang, H. Liu, J.M Gong, Effects of Pre-strain on Sensitization and Interganular Corrosion for 304 Stainless Steel, Engineering Failure Analysis, 2019, 106, Article 104179.

  23. Corrosion of Metals and Alloys - Test Methods for Intergranular Corrosion of Austenitic and Ferritic-Austenitic (Duplex)Stainless Steels, GB/T 4334-2020, GB, 2020.

  24. S.H. Zhang, Alloy steel, Beijing: Metallurgical Industry Press, 1981, p 28, in chinese.

  25. S. Hu, Y.Z. Mao, X.B. Liu, E.H. Han, H. Hänninenad, Intergranular Corrosion Behavior of Low-chromium Ferritic Stainless Steel without Cr-carbide Precipitation After Aging, Corros. Sci., 2020, 166, Article 108420.

  26. E. García-Ochoa, G. González-Sánchez, N. Acuña and J. Euan, Analysis of the Dynamics of Intergranular Corrosion Process of Sensitised 304 Stainless Steel Using Recurrence Plots, J. Appl. Electrochem., 2009, 39(5), p 637–645.

    Article  Google Scholar 

  27. A.V. Bansod, A.P. Patil, A.P. Moon and N.N. Khobragade, Intergranular Corrosion Behavior of Low-Nickel and 304 Austenitic Stainless Steels, J. Mater. Eng. Perform., 2016, 25, p 3615–3626.

    Article  CAS  Google Scholar 

  28. S.K. Pradhan, P. Bhuyan and S. Mandal, Individual and Synergistic Influences of Microstructural Features on Intergranular Corrosion Behavior in Extra-Low Carbon Type 304L Austenitic Stainless Steel, Corros. Sci., 2018, 139, p 319–332.

    Article  CAS  Google Scholar 

  29. S. Jain, N.D. Budiansky, J.L. Hudson, J.R. Scully, Surface Spreading of Intergranular Corrosion on Stainless Steels. Corros. Sci., 2010, 52(3), p 873–885.

  30. O.S. Savane, E. Khan, S. Freud, A. Murphy, K. Tesfargiogis and V. Murray, Persistent Pockets of Low Chlorine Residual in New York City's Drinking Water Distribution System: A Case Study, J. Am. Water Works Assoc., 2019, 111(10), p 40–50.

    Article  CAS  Google Scholar 

  31. X. Hu, X. Renb, X. Chen, W. Han, F. Zou, A study on the corrosion of 316L stainless steel in the media of high-pressure carbamate condenser, In: Proceedings of the Asian-Pacific corrosion control conference, 8th ed. Bangkok, December 6–11; 1993, p 237–244.

  32. X.J. Yang, M.H. Liu, Z.Y. Liu, C.W. Du and X.G. Li, Failure Analysis of a 304 Stainless Steel Heat Exchanger in Liquid Sulfur Recovery Units, Eng. Fail. Anal., 2020, 116, p 104729–104739.

    Article  CAS  Google Scholar 

  33. A. Gruttadauria, S. Barella and R. Gerosa, An Overview of Austenitic Stainless-Steel Rock Anchors Damage in an Environment Rich with Chlorides, Eng. Fail. Anal., 2019, 100, p 88–102.

    Article  CAS  Google Scholar 

  34. D.H. Du, K. Chen, H. Lu, L.F Zhang, X.Q Shi, X.L Xu, P. L. Andresen, Effects of Chloride and Oxygen on Stress Corrosion Cracking of Cold Worked 316/316L Austenitic Stainless Steel in High Temperature Water, Corros. Sci., 2016, 110, p 134–142.

  35. S.A. Saadi, Y. Yi, P. Cho, C. Jang and P. Beeley, Passivity Breakdown of 316L Stainless Steel During Potentiodynamic Polarization in NaCl Solution, Corros. Sci., 2016, 111, p 720–727.

    Article  CAS  Google Scholar 

  36. Y.D. Li, N. Xu, X.F. Wu, J.B. Shi, L.L. Zhang, M. Zhao and Q.S. Zang, Failure Analysis of the 304 Stainless Steel Tube in a Gas Analyzer, Eng. Fail. Anal., 2012, 20, p 35–42.

    Article  Google Scholar 

  37. R. Nishimura, I. Musalam and M. Yasuaki, The Effect of sensitizing Temperature on Stress Corrosion Cracking of Type 316 Austenitic Stainless Steel in Hydrochloric Acid Solution, Corros. Sci., 2002, 44(6), p 1343–1360.

    Article  CAS  Google Scholar 

  38. A.Y. Kina, V.M.D. Souza, S.S.M. Tavares, J.M. Pardal and J.A.D. Souza, Microstructure and intergranular Corrosion Resistance Evaluation of AISI 304 Steel for High Temperature Service, Mater. Charact., 2008, 59(5), p 651–655.

    Article  CAS  Google Scholar 

  39. X.F. Yu and S.H. Chen, A Simulation of Cr Depletion In Austenitic Stainless Steel With Cellular Automaton, Comput. Mater. Sci., 2009, 45, p 899–904.

    Article  CAS  Google Scholar 

  40. Q.R. Xiong, J.D. Robson, L.T. Chang, J.W. Fellowes and M.C. Smith, Numerical Simulation of Grain Boundary Carbides Evolution in 316H Stainless Steel, J. Nucl. Mater., 2018, 508, p 299–309.

    Article  CAS  Google Scholar 

  41.  Specification for Seamless and Welded Ferritic/Austenitic Stainless Steel Tubing for General Service, American Society for Testing and Materials, ASTM A789(2020).

  42. D.E. Arthur, A. Jonathan, P.O. Ameh, C. Anya, A Review on the Assessment of Polymeric Materials Used as Corrosion Inhibitor of Metals and Alloys, Int. J. Ind. Chem. 2013, 4(1), Article 2.

  43. C.R. Ascolese and D.I. Bain, Take Advantage of Effective Cooling Water Treatment Programs, Chem. Eng. Prog., 1998, 94(3), p 49–54.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Key Research and Development Program of China (2019YFB2005002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhuai Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Tian, W., Li, J. et al. Failure Analysis and Finite Element Simulation on Service Conditions of SUS304 Stainless Steel. J. of Materi Eng and Perform 30, 5987–5999 (2021). https://doi.org/10.1007/s11665-021-05744-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05744-x

Keywords

Navigation