Skip to main content

Advertisement

Log in

High-Temperature Oxidation and Wear Behavior of (Fe,Cr)Al Intermetallic Compound and (Fe,Cr)Al-Al2O3 Nanocomposites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the current study, oxidation and wear resistance of FeAl and (Fe,Cr)Al intermetallic compounds as well as (Fe,Cr)Al-5%vol Al2O3 and (Fe,Cr)Al-10%vol Al2O3 nanocomposites were investigated. Ball-milled powders were hot-pressed at 5.5 GPa and 1600 °C for 15 min in order to produce the bulk samples. The cyclic oxidation test was performed at 1100 °C for 100h. High-temperature wear tests were conducted at 400 °C with loads of 20 N in sliding speed and sliding distance of 0.1 m/s and 500 m, respectively. Furthermore, the nano-scratch tests were performed in single-direction as well as pass and return modes with a maximum load of 20 mN. Results showed that the (Fe,Cr)Al intermetallic compound had superior oxidation resistance with the lowest kp value at the same oxidation time. The improved oxidation performance of (Fe,Cr)Al intermetallic compound compared to (Fe,Cr)Al-Al2O3 composites can be due to the presence of more Al in (Fe,Cr)Al sample. According to the nano-scratch test, (Fe,Cr)Al-10%vol Al2O3 nanocomposite (with H/E ratio of 0.036) had the best wear resistance. On the other hand, nanocomposites containing 5% and 10% of Al2O3 had the lowest friction coefficient (≈ 0.6 and 0.3, respectively). The main wear mechanism for the FeAl compound was adhesive wear, while, delamination was the main mechanism for samples containing Al2O3 nanoparticles. Although the formation of Al2O3 reinforcement nanoparticles somewhat decreases the oxidation resistance, it also resulted in significant overall improvement in the wear behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Zamanzade, A. Barnoush and C. Motz, A Review on the Properties of Iron Aluminide Intermetallics, Crystals, 2016, 6(1), p 10.

    Article  Google Scholar 

  2. D.E. Alman, J.A. Hawk, J.H. Tylczak, C.P. Doğan and R.D. Wilson, Wear of Iron-aluminide Intermetallic-Based Alloys and Composites by Hard Particles, Wear, 2001, 251(1–12), p 875–884.

    Article  Google Scholar 

  3. J. Yang, P. La, W. Liu and Q. Xue, Tribological Properties of FeAl Intermetallics under Dry Sliding, Wear, 2004, 257(1–2), p 104–109.

    Article  CAS  Google Scholar 

  4. J. Qiu, I. Baker, F.E. Kennedy, Y. Liu and P.R. Munroe, The Effects of Stoichiometry on the Dry Sliding Wear of FeAl, Intermetallics, 2013, 40, p 19–27.

    Article  CAS  Google Scholar 

  5. A. Leyland and A. Matthews, On the Significance of the H/E Ratio in Wear Control: A Nanocomposite Coating Approach to Optimised Tribological Behaviour, Wear, 2000, 246(1–2), p 1–11.

    Article  CAS  Google Scholar 

  6. B.D. Beake, V.M. Vishnyakov and A.J. Harris, Nano-Scratch Testing of (Ti, Fe) Nx Thin Films on Silicon, Surf. Coatings Technol., 2017, 309, p 671–679.

    Article  CAS  Google Scholar 

  7. H.J. Grabke, Oxidation of NiAl and FeAl, Intermetallics, 1999, 7(10), p 1153–1158.

    Article  CAS  Google Scholar 

  8. A. Velon and I. Olefjord, Oxidation Behavior of Ni3Al and Fe3Al: II. Early Stage of Oxide Growth, Oxid. Met., 2001, 56(56), p 425–452.

    Article  CAS  Google Scholar 

  9. J. Engkvist, U. Bexell, M. Grehk and M. Olsson, High temperature oxidation of FeCrAl-Alloys-Influence of Al-Concentration on Oxide Layer Characteristics, Mater. Corros., 2009, 60(11), p 876–881.

    Article  CAS  Google Scholar 

  10. E. Airiskallio, E. Nurmi, M.H. Heinonen, I.J. Väyrynen, K. Kokko, M. Ropo, M.P.J. Punkkinen, H. Pitkänen, M. Alatalo and J. Kollár, High Temperature Oxidation of Fe-Al and Fe-Cr-Al Alloys: The Role of Cr as a Chemically Active Element, Corros. Sci., 2010, 52(10), p 3394–3404.

    Article  CAS  Google Scholar 

  11. B. Pietrzyk, S. Miszczak, Ł Kaczmarek and M. Klich, Low Friction Nanocomposite Aluminum oxide/MoS2 Coatings Prepared by Sol-Gel Method, Ceram. Int., 2018, 44(7), p 8534–8539.

    Article  CAS  Google Scholar 

  12. Z. Nasiri, M. Mashhadi and A. Abdollahi, Effect of Short Carbon Fiber Addition on Pressureless Densification and Mechanical Properties of ZrB2–SiC–Csf Nanocomposite, Int. J. Refract. Met. Hard Mater., 2015, 51, p 216–223.

    Article  CAS  Google Scholar 

  13. A. Fathy, A. Wagih and A. Abu-Oqail, Effect of ZrO2 Content on Properties of Cu-ZrO2 Nanocomposites Synthesized by Optimized High Energy Ball Milling, Ceram. Int., 2019, 45(2), p 2319–2329.

    Article  CAS  Google Scholar 

  14. J. Huang, H. Xie, L. Luo, X. Zan, D. Liu and Y. Wu, Preparation and Properties of FeAl/Al2O3 Composite Tritium Permeation Barrier Coating on Surface of 316L Stainless Steel, Surf. Coatings Technol., 2020, 383, p 125282.

    Article  CAS  Google Scholar 

  15. F. Sourani, M.H. Enayati and A.H.W. Ngan, On the in Situ Synthesis of (Fe, Cr) Al and (Fe, Cr) Al–Al2O3 Nanostructured Materials, Mater. Res. Express, 2019, 6(8), p 0850c9.

    Article  CAS  Google Scholar 

  16. I.A. Alhafez, A. Brodyanski, M. Kopnarski and H.M. Urbassek, Influence of Tip Geometry on Nanoscratching, Tribol. Lett., 2017, 65(1), p 1–13.

    Article  Google Scholar 

  17. F. Sourani, M.H. Enayati, X. Zhou, S. Wang and A.H.W. Ngan, Nanoindentation Behavior of Nanostructured Bulk (Fe, Cr) Al and (Fe, Cr) Al-Al2O3 Nanocomposites, J. Alloys Compd., 2019, 792, p 348–356.

    Article  CAS  Google Scholar 

  18. T.F. An, H.R. Guan, X.F. Sun and Z.Q. Hu, Effect of the Θ–α-Al2O3 Transformation in Scales on the Oxidation Behavior of a Nickel-Base Superalloy with an Aluminide Diffusion Coating, Oxid. Met., 2000, 54(3–4), p 301–316.

    Article  CAS  Google Scholar 

  19. C.H. Xu, W. Gao and H. Gong, Oxidation Behaviour of FeAl Intermetallics The Effects of Y And/or Zr on Isothermal Oxidation Kinetics, Intermetallics, 2000, 8(7), p 769–779.

    Article  CAS  Google Scholar 

  20. F.S. Sayyedan and M.H. Enayati, Evaluating Oxidation Behavior of Amorphous Aluminum Phosphate Coating, Appl. Surf. Sci., 2018, 455, p 821–830.

    Article  CAS  Google Scholar 

  21. X. Lu, X.B. He, B. Zhang, X.H. Qu, L. Zhang, Z.X. Guo and J.J. Tian, High-Temperature Oxidation Behavior of TiAl-Based Alloys Fabricated by Spark Plasma Sintering, J. Alloys Compd., 2009, 478(1–2), p 220–225.

    Article  CAS  Google Scholar 

  22. W. Haitao, W. Yuqing, Y. Huashun, and M.G.W. Zhifu, Effects of Composite Scale on High Temperature Oxidation Resistance of Fe-Cr-Ni Heat Resistant Alloy, Res. Dev., 2009, 6, p 109–114.

    Google Scholar 

  23. H. Pourmohammad, A. Bahrami, A. Eslami, and M. Taghipour, Failure Investigation on a Radiant Tube in an Ethylene Cracking Unit, Eng. Fail. Anal., 2019, 104, p 216–226.

    Article  CAS  Google Scholar 

  24. M. Taghipour, A. Eslami, M. Salehi and A. Bahrami, An Investigation on Anti-Coking Behavior of Gas Phase Aluminide Coatings Applied on a High Performance Micro Alloyed (HP-MA) Steel, Elsevier, Surf. Coatings Technol., 2020, p 125607.

    Google Scholar 

  25. F. Sourani, M.H. Enayati, F. Ashrafizadeh, F.S. Sayyedan and P.K. Chu, Enhancing Surface Properties of (Fe, Cr) Al–Al2O3 Nanocomposite by Oxygen Ion Implantation, J. Alloys Compd., 2021, 853, p 156892.

    Article  CAS  Google Scholar 

  26. W.S. Barakat, A. Wagih, O.A. Elkady, A. Abu-Oqail, A. Fathy and A. El-Nikhaily, Effect of Al2O3 Nanoparticles Content and Compaction Temperature on Properties of Al–Al2O3 Coated Cu Nanocomposites, Compos. Part B Eng., 2019, 175, p 107140.

    Article  CAS  Google Scholar 

  27. G.P. Ram, S. Karthikeyan, P.E. Nicholas, and A.S. Sofia, Dry Sliding Wear Behavior of Electroless NIP and NIP-Al2O3 Composite Coatings, Mater. Today Proc., 2021, 37, p 2001–2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sourani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sourani, F., Enayati, M.H. & Taghipour, M. High-Temperature Oxidation and Wear Behavior of (Fe,Cr)Al Intermetallic Compound and (Fe,Cr)Al-Al2O3 Nanocomposites. J. of Materi Eng and Perform 30, 3654–3669 (2021). https://doi.org/10.1007/s11665-021-05710-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05710-7

Keywords

Navigation