Skip to main content
Log in

Effect of Boron Nitride Addition on Densification, Microstructure, Mechanical, Thermal, and Dielectric Properties of β-SiAlON Ceramic

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this present communication, an investigation was carried out to examine the influence of hexagonal boron nitride (h-BN) powder addition and its particle size on the density, microstructure, mechanical, thermal, and dielectric properties of h-BN containing β-SiAlON ceramic. It was observed that with the increase in BN content up to 5 wt.% in starting composition, the bulk density of β-SiAlON decreases drastically from 3.22  (for pristine SiAlON) to 3.05 g/cm3 and 2.90 g/cm3 for small and large particle size containing β-SiAlON, respectively. The bulk density and mechanical properties such as Young’s modulus, Vickers hardness, flexural strength, and fracture toughness of pristine β-SiAlON are superior in comparison with both types of β-SiAlON-BN ceramic. On the other side, the density and mechanical properties of β-SiAlON prepared with fine BN powder show superior value compared to that of larger BN particle-added β-SiAlON. The thermal properties such as thermal conductivity for both BN powder-added β-SiAlONs are higher compared to that of pristine β-SiAlON. However, larger BN particle-added β-SiAlON exhibits superior thermal conductivity than that of fine BN powder-added β-SiAlON. The dielectric constant of h-BN-added SiAlON is relatively lower than that of pristine β-SiAlON.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Ekstrom and M. Nygren, SiAlON Ceramics, J. Am. Ceram. Soc., 1992, 75(2), p 259–276. https://doi.org/10.1111/j.1151-2916.1992.tb08175.x

    Article  Google Scholar 

  2. F. Ye, L. Liu, H. Zhang, Y. Zhou and Z. Zhang, Novel Mixed α/β-SiAlONs with Both Elongated α and β Grains, Scr. Mater., 2009, 60(6), p 471–474. https://doi.org/10.1016/j.scriptamat.2008.11.033

    Article  CAS  Google Scholar 

  3. Y.L. Lan, J.Q. Li, Q.Z. Chen, C.H. Zhang, Y. Li, F.S. Liu and W.Q. Ao, Mechanical Properties and Thermal Conductivity of Dense β-SiAlON Ceramics Fabricated by Two-stage Spark Plasma Sintering with Al2O3-AlN-Y2O3 Additives, J. Eur. Ceram. Soc., 2020, 40(1), p 12–18. https://doi.org/10.1016/j.jeurceramsoc.2019.09.013

    Article  CAS  Google Scholar 

  4. H. Mandal and N.C. Ackibus, Processing, Characterization, and Mechanical Properties of SiAlONs Produced from Low Cost β-Si3N4, KONA Powder Part. J., 2013, 30, p 22–30. https://doi.org/10.14356/kona.2013007

    Article  CAS  Google Scholar 

  5. D.K. Kim, H.N. Kim, Y.H. Seong, S.S. Baek, E.S. Kang and Y.G. Baek, Dielectric Properties of SiAlON Ceramics, Key Eng. Mater., 2008, 403, p 125.

    Article  Google Scholar 

  6. J.S. Thorp and R.I. Sharif, Dielectric Properties of Some Hot-Pressed Nitrogen Ceramics, J. Mater. Sci., 1977, 12, p 2274–2280. https://doi.org/10.1007/BF00552249

    Article  CAS  Google Scholar 

  7. C. Liu, D. Jia, S. Wang and W. Cui, Properties of h-BN/Si3N4 Composite Ceramics Fabricated by Gel-Casting, Mater. Sci. Forum., 2013, 745–746, p 517–522.

    Article  Google Scholar 

  8. I.P. Neshpor, T.V. Mosina, O.N. Grigoriev, A.D. Panasyuk, A.V. Koroteev, N.D. Bega, L.M. Melakh, I. Zalite, A.D. Kostenko and N.V. Boshitskaya, The Mechanical Properties of Sialon: Boron Nitride Composite Ceramics, Powder Metall. Met. Ceram., 2015, 53(9–10), p 574–583. https://doi.org/10.1007/s11106-015-9652-4

    Article  CAS  Google Scholar 

  9. D. Zhao, Y. Zhang, H. Gong, B. Zhu and X. Zhang, BN Nanoparticles/Si3N4 Wave-Transparent Composites with High Strength and Low Dielectric Constant, J. Nanomater., 2011, 246847, p 1–5. https://doi.org/10.1155/2011/246847

    Article  CAS  Google Scholar 

  10. Y. Feng, H. Gong, Y. Zhang, X. Wang, S. Che, Y. Zhao and X. Guo, Effect of BN Content on the Mechanical and Dielectric Properties of Porous BNp/Si3N4 Ceramics, Ceram. Int., 2016, 42(1), p 661–665. https://doi.org/10.1016/j.ceramint.2015.08.162

    Article  CAS  Google Scholar 

  11. Y. Li, P. Liu, X. Wang, H. Jin and G. Qiao, Effect of Hexagonal BN on the Microstructure and Mechanical Properties of Pressureless Sintered Porous Si3N4 Ceramics, Key Eng. Mater., 2010, 434–435, p 697–700.

    Article  Google Scholar 

  12. Y. Li, B. Ge, Z. Wu, G. Xiao, Z. Shi and Z. Jin, Effects of h-BN on mechanical Properties of Reaction Bonded β-SiAlON/h-BN Composites, J. Alloys Compd., 2017, 703(5), p 180–187. https://doi.org/10.1016/j.jallcom.2017.01.318

    Article  CAS  Google Scholar 

  13. R. Shuba and I.W. Chen, Machinable α-SiAlON/BN Composite, J. Am. Ceram. Soc., 2006, 89(7), p 2147–2153. https://doi.org/10.1111/j.1551-2916.2006.01022.x

    Article  CAS  Google Scholar 

  14. D.-S. Yan, Material Chemistry Studies: Their Role for the Development of Advanced Nitride Materials, Pure Appl. Chem., 1994, 66(8), p 1629–1640. https://doi.org/10.1351/pac199466081629

    Article  CAS  Google Scholar 

  15. J.R. Jiménez, Y. Guo, J.M. Martinez-Rosales, S. Sugita, W. Redington, M.J. Pomeroy and S. Hampshire, Liquid/Glass Immiscibility in Yttria Doped Mullite Ceramics, J. Eur. Ceram. Soc., 2016, 36(14), p 3523–3530. https://doi.org/10.1016/S0955-2219(98)00267-2

    Article  Google Scholar 

  16. “Standard Test Methods for Determination of Water Absorption and Associated Properties by Vacuum Method for Pressed Ceramic Tiles and Glass Tiles and Boil Method for Extruded Ceramic Tiles and Non-tile Fired Ceramic Whiteware Products,” ASTM Standard C373-18, ASTM International, 2018, p. 1-7. https://doi.org/10.1520/C0373-18

  17. “Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration,” ASTM Standard E1876-15, ASTM International, 2016, p. 1-17. https://doi.org/10.1520/E1876-15

  18. “Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics,” ASTM Standard E1327-15, ASTM International, 2019, p. 1-10, DOI: 10.1520/ C1327-15R19.

  19. Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature, ASTM Standard C1161-13, ASTM International, 2013, p. 1-19. https://doi.org/10.1520/C1161-13.

  20. Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature, ASTM Standard C1421-16, ASTM International, 2016, p.1-33. https://doi.org/10.1520/C1421-16.

  21. Standard Test Method for Thermal Diffusivity by the Flash Method, ASTM Standard E1461 - 13, ASTM International, 2015, p.1-11, https://doi.org/10.1520/E1461-13.

  22. Standard Test Methods for AC Loss Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulation, ASTM Standard D150-18, ASTM International, 2018, p.1-20. https://doi.org/10.1520/D0150-18.

  23. L.K.L. Falk, SiAlON Microstructures, J. Ceram. Soc. Jpn., 2008, 116(6), p 685–687. https://doi.org/10.2109/jcersj2.116.685

    Article  CAS  Google Scholar 

  24. J.C. Bressiani, V. Izhevskyi and A.H.A. Bressiani, Development of the Microstructure of the Silicon Nitride Based Ceramics, Mater. Res., 1999, 2(3), p 165–172. https://doi.org/10.1590/S1516-14391999000300009

    Article  CAS  Google Scholar 

  25. H.O. Pierson, Covalent Nitrides : Properties and General Characteristics, Handbook of Refractory Carbides and Nitrides : Properties, Characteristics, Processing and Applications, 1st ed., Noyes, NJ, 1996, p.223-247

  26. M.I. Jones, K. Hirao, H. Hyuga, Y. Yamauchi and S. Kanzaki, Wear Properties of Y–α/β Composite SiAlON Ceramics, J. Eur. Ceram. Soc., 2003, 23(10), p 1743–1750. https://doi.org/10.1016/S0955-2219(02)00401-6

    Article  CAS  Google Scholar 

  27. R.H. Carter, J.H. Underwood, J.J. Swab, A.A. Wereszczak, C. Leveritt, R. Emerson and L. Burton, Material Selection for Ceramic Gun Tube Liner, Mater. Manuf. Process., 2006, 21(6), p 584–590. https://doi.org/10.1080/10426910600602879

    Article  CAS  Google Scholar 

  28. C.B. Raju, S. Verma, M.N. Sahu, P.K. Jain and S. Choudary, Silicon Nitride/SiAlON Ceramic: A Review, IJEMS, 2001, 8(1), p 36–45.

    CAS  Google Scholar 

  29. B. Lee, D. Lee, J.H. Lee, H.J. Ryu and S.H. Hong, Enhancement of Toughness and Wear Resistance in Boron Nitride Nanoplatelet (BNNP) Reinforced Si3N4 Nanocomposites, Sci. Rep., 2016, 6(27609), p 1–5. https://doi.org/10.1038/srep27609

    Article  CAS  Google Scholar 

  30. J.C. Garrett, I. Sigalas, A.K. Wolfrum and M. Herrmann, Effect of Cubic Boron Nitride Grain Size in the Reinforcing of α-Sialon Ceramics Sintered via SPS, J. Eur. Ceram. Soc., 2015, 35(2), p 451–462. https://doi.org/10.1016/j.jeurceramsoc.2014.09.036

    Article  CAS  Google Scholar 

  31. F. Ye, Z. Hou, H. Zhang, L. Liu and Y.u. Zhou, , Spark Plasma Sintering of cBN/β-SiAlON Composites, Mater. Sci. Eng. A, 2010, 527(18–19), p 4723–4726. https://doi.org/10.1016/j.msea.2010.04.034

    Article  CAS  Google Scholar 

  32. W.D. Kingery, H.K. Bowen and D.R. Uhlmann, Thermal Properties, Introduction to Ceramics, 2nd ed. Wiley, NY, 1976, p 583–645

    Google Scholar 

  33. X. Yi, W. Zhang and T. Akiyama, Thermal Conductivity of β-SiAlONs Prepared by a Combination of Combustion Synthesis and Spark Plasma Sintering, Thermochim. Acta., 2014, 576(20), p 56–59. https://doi.org/10.1016/j.tca.2013.12.002

    Article  CAS  Google Scholar 

  34. A. Laturia, M.L. Van de Put and W.G. Vandenberghe, Dielectric Properties of Hexagonal Boron Nitride and Transition Metal Dichalcogenides: from Monolayer to Bulk, npj 2D Mater. Appl., 2018, 2018(2), p 1–7. https://doi.org/10.1038/s41699-018-0050-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Director-ARC International for his kind permission to publish this work. We express our gratitude to Dr. P.K. Jain (Scientist), Dr. Y.S. Rao (Scientist), and Dr. N. Ravi (Scientist) for extending their kind support to carry out the thermal property and flexural strength measurement, respectively. Our thanks also go to Mrs. B.V. Shalini (Technical Officer) and Mr. R. Anbarasu (Technical Officer) for their technical support during sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Barick.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barick, P., Saha, B.P. Effect of Boron Nitride Addition on Densification, Microstructure, Mechanical, Thermal, and Dielectric Properties of β-SiAlON Ceramic. J. of Materi Eng and Perform 30, 3603–3611 (2021). https://doi.org/10.1007/s11665-021-05692-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05692-6

Keywords

Navigation