Skip to main content
Log in

Microstructure and Phase Transformations in High-Strength Bainitic Forging Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, the microstructural evolution and the phase transformations on a 0.22 wt.% carbon bainitic forging steel are investigated using a deformation dilatometer. The microstructure evolution was characterized using light microscope (LM), scanning electron microscope (SEM), transmission electron microscope (TEM), x-ray diffraction (XRD), and electron backscatter diffraction (EBSD). It was tried to predict the phase transformations via a continuous cooling transformation (CCT) diagram calculated by JMatPro using the results of prior austenite grain size measurement. In addition, critical temperatures were calculated using Thermo-Calc, JMatPro, and empirical formulations. Based on the dilatometric tests, hardness, and microstructural investigation, a deformation-CCT diagram was plotted. It was found that a bainitic microstructure can be obtained at cooling rates from 0.15 to 8 K/s. The microstructures varied from a mixture of bainite and blocky martensite/austenite islands at lower cooling rates to a bainitic ferrite with martensite at higher cooling rates. Finally, an industrially hot-forged sample cooled at 1 K/s was investigated. The microstructural evolution showed a microstructure of carbide-free bainitic ferrite along with film and island of retained austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. E. Erisir, B. Zeislmair, C. Keul, F. Gerdemann, and W. Bleck. New Developments for Microalloyed High Strength Forging Steels, in 19th International Forging Congress, 2008.

  2. C. Keul, and W. Bleck, New Microalloyed Steels for Forgings, J. Iron. Steel Res. Int., 2011, 18, p 104–111.

    Google Scholar 

  3. P. Charlier, and L. Baecker, Optimization of the Chemistry of a Micro-Alloyed Steel Containing 0.45% Carbon to Obtain a Tensile Strength of 1000 MPa (145 KPSI) Without Heat Treatment, Fundamentals of Microalloying Forging Steels. G. Krauss, S.K. Banerji Ed., Warrendale, TMS-AIME, 1987, p 207–216

    Google Scholar 

  4. H.S. Fang, F.E.N.G. Chun, Y.K. Zheng, Z.G. Yang, and B.Z. Bai, Creation of Air-Cooled Mn Series Bainitic Steels, J. Iron. Steel Res. Int., 2008, 15(6), p 1–9.

    Article  CAS  Google Scholar 

  5. F.C. Zhang, X.Y. Long, J. Kang, D. Cao, and B. Lv, Cyclic Deformation Behaviors of a High Strength Carbide-Free Bainitic Steel, Mater. Des., 2016, 94, p 1–8.

    Article  Google Scholar 

  6. F.G. Caballero, S. Allain, J. Cornide, J.P. Velásquez, C. Garcia-Mateo, and M.K. Miller, Design of Cold Rolled and Continuous Annealed Carbide-Free Bainitic Steels for Automotive Application, Mater. Des., 2013, 49, p 667–680.

    Article  CAS  Google Scholar 

  7. A. Leiro, E. Vuorinen, K.G. Sundin, B. Prakash, T. Sourmail, V. Smanio, and R. Elvira, Wear of Nano-Structured Carbide-Free Bainitic Steels Under Dry Rolling–Sliding Conditions, Wear, 2013, 298, p 42–47.

    Article  Google Scholar 

  8. S. Sharma, S. Sangal, and K. Mondal, Development of New High-Strength Carbide-Free Bainitic Steels, Metall. Mater. Trans. A., 2011, 42(13), p 3921–3933.

    Article  CAS  Google Scholar 

  9. C. Keul, V. Wirths, and W. Bleck, New Bainitic Steels for Forgings, Arch. Civ. Mech. Eng., 2012, 12(2), p 119–125.

    Article  Google Scholar 

  10. V. Wirths, R. Wagener, W. Bleck, and T. Melz, Bainitic Forging Steels for Cyclic Loading, Adv. Mater. Res., 2014, 922, p. 813–818

  11. M. Shah, S.K. Das, and S.G. Chowdhury, Effect of Alloying Elements on Microstructure and Mechanical Properties of Air-Cooled Bainitic Steel, Metall. Mater. Trans. A., 2019, 50(5), p 2092–2102.

    Article  CAS  Google Scholar 

  12. T. Sourmail, Bainite and Superbainite in Long Products and Forged Applications, HTM J. Heat Treat. Mater., 2017, 72(6), p 371–378.

    Article  Google Scholar 

  13. T. Sourmail, and V. Smanio, Optimisation of the Mechanical Properties of Air Cooled Bainitic Steel Components Through Tailoring of the Transformation Kinetics, Mater. Sci. Eng. A, 2013, 582, p 257–261.

    Article  CAS  Google Scholar 

  14. M.N. Yoozbashi, S. Yazdani, and T.S. Wang, Design of a New Nanostructured, High-Si Bainitic Steel with Lower Cost Production, Mater. Des., 2011, 32(6), p 3248–3253.

    Article  CAS  Google Scholar 

  15. H.K.D.H. Bhadeshia, High Performance Bainitic Steels, Mater. Sci. Forum, 2005, 500, p. 63–74

  16. G.T. Hahn, W.S. Owen, B.L. Averbach, and M. Cohen, Micromechanism of Brittle Fracture in a Low-Carbon Steel. WJ (Research Suppiment), 1959, 24(9), p 367–376.

    Google Scholar 

  17. H.K.D.H. Bhadeshia, and D.V. Edmonds, Bainite in Silicon Steels: New Composition–Property Approach Part 1, Met. Sci., 1983, 17(9), p 411–419.

    Article  CAS  Google Scholar 

  18. H.D.H. Bhadeshia, and D.V. Edmonds, TheBainite Transformation in a Silicon Steel, Metall. Trans. A, 1979, 10(7), p 895–907.

    Article  Google Scholar 

  19. J. Cornide, C. Garcia-Mateo, C. Capdevila, and F.G. Caballero, An assessment of the Contributing Factors to the Nanoscale Structural Refinement of Advanced Bainitic Steels, J. Alloys Compd., 2013, 577, p S43–S47.

    Article  CAS  Google Scholar 

  20. A. Kapito. The Design of a Carbide-Free Alloy Composition and Heat Treatment Process for Forged Rail Wheel Application in South Africa (Doctoral dissertation, University of Pretoria) (2019)

  21. F.G. Caballero, Carbide-Free Bainite in Steels, in Phase Transformations in Steels, E.V. Pereloma and D.V. Edmonds Eds., Woodhead Publishing, 2012, p. 436–467

  22. J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, Calphad, 2002, 26(2), p 273–312.

    Article  CAS  Google Scholar 

  23. N. Saunders, Z. Guo, X. Li, A.P. Miodownik, and J.P. Schillé. The Calculation of TTT and CCT Diagrams for General Steels. JMatPro Software Literature, 2004.

  24. M. Morawiec, A. Skowronek, M. Król, and A. Grajcar, Dilatometric Analysis of the Austenite Decomposition in Undeformed and Deformed Low-Carbon Structural Steel, Materials, 2020, 13(23), p 5443.

    Article  CAS  Google Scholar 

  25. R.Y. Zhang, and J.D. Boyd, Bainite Transformation in Deformed Austenite, Metall. Mater. Trans. A., 2010, 41(6), p 1448–1459.

    Article  Google Scholar 

  26. A.-F. Gourgues, H.M. Flower, and T.C. Lindley, Electron Backscattering Diffraction Study of Acicular Ferrite, Bainite, and Martensite Steel Microstructures, Mater. Sci. Technol., 2000, 16(1), p 26–40.

    Article  CAS  Google Scholar 

  27. R. Petrov, L. Kestens, A. Wasilkowska, and Y. Houbaert, Microstructure and Texture of a Lightly Deformed TRIP-Assisted Steel Characterized by Means of the EBSD Technique, Mater. Sci. Eng. A, 2007, 447(1–2), p 285–297.

    Article  Google Scholar 

  28. H.J. Bunge, Texture Analysis in Materials Science: Mathematical Methods, 2nd ed. Elsevier, Amsterdam, 1982.

    Google Scholar 

  29. W. Steven, and A.G. Haynes, The Temperature Formation of Martensite and Bainite in Low-alloy Steels Some Effects of Chemical Composition, JISI, 1956, 183, p 349–359.

    CAS  Google Scholar 

  30. R.A. Grange, and H.M. Stewart, The Temperature Range of Martensite Formation, Trans. AIMME, 1946, 167, p 467–494.

    Google Scholar 

  31. A.E. Nehrenberg, The Temperature Range of Martensite Formation, Transactions AIME, 1946, 167, p 494–498.

    Google Scholar 

  32. K.W. Andrews, Empirical Formulae for Calculation of Some Transformation Temperatures, JISI, 1965, 203, p 721–727.

    CAS  Google Scholar 

  33. H.K.D.H. Bhadeshia, J. Phys. Coll., 1982, C4(43), p 443–448.

    Google Scholar 

  34. J.C. Zhao, and M.R. Notis, Continuous Cooling Transformation Kinetics Versus Isothermal Transformation Kinetics of Steels: A Phenomenological Rationalization of Experimental Observations, Mater. Sci. Eng. R. Rep., 1995, 15(4–5), p 135–207.

    Article  Google Scholar 

  35. S. Zaefferer, P. Romano, and F. Friedel, EBSD as a Tool to Identify and Quantify Bainite and Ferrite in Low-Alloyed Al-TRIP Steels, J. Microsc., 2008, 230(3), p 499–508.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) under research Project Number 3180102. The authors gratefully acknowledge collaboration with KANCA and BorgWarner Turkey. Further we thank Dr. C. Şimşir for accessing a deformation dilatometer, Prof. Dr. B. Ögel for XRD measurements, and A. Özcan for Rietveld Refinement during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersoy Erişir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erişir, E., Ayhan, İ.İ., Güney, C. et al. Microstructure and Phase Transformations in High-Strength Bainitic Forging Steel. J. of Materi Eng and Perform 30, 3458–3467 (2021). https://doi.org/10.1007/s11665-021-05689-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05689-1

Keywords

Navigation