Skip to main content

Advertisement

Log in

Microstructure and Mechanical Properties of Heat-Treated Ti-Al-Si Alloy Produced via Laser In Situ Alloying

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Intermetallics based on gamma titanium aluminide (γ-TiAl) alloys are potential lightweight materials that can be used for high-temperature components. However, poor room temperature ductility hinders their full potential for producing components using conventional manufacturing routes. This work is focused on the study of the microstructure and mechanical properties of ternary Ti-Al-Si alloy fabricated through laser in situ alloying by utilizing laser engineered net shaping (LENS) technology with subsequent heat treatment. The produced samples were analyzed using a scanning electron microscope (SEM) equipped with an energy-dispersed spectroscope (EDS) to investigate the composition and microstructure. Phase identification was investigated with x-ray diffraction (XRD) and electron backscattered diffraction (EBSD). Vickers hardness testing machine was utilized to determine the microhardness values, while the yield strength and tensile strength were calculated from the hardness results. Based on the results obtained, the microstructure of the heat-treated and as-produced ternary Ti-Al-Si alloy comprised mainly of α2-Ti3Al, γ-TiAl and ζ-Ti5Si3 phases. The SEM and EBSD results confirmed the phases formed, especially the fine lath structures of α2 in the colonies of α2/γ lamellae. The quantity of ζ-Ti5Si3 present in the LENS produced ternary alloy contributed majorly to the reported microhardness values. The sample heat-treated at 1150 °C/15 min/air-cooled (AC)/950 °C /6 h/furnace cooled (FC) (sample E1) had the lowest microhardness value of 624 Hv (6118 MPa or 6.12 GPa), with a corresponding tensile strength of 2325 MPa and yield strength of 1022 MPa. This was ascribed to the occurrence of more colonies of α2/γ lamellar in comparison with other samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Hong, D. Gu, D. Dai, M. Alkhayat, W. Urban, P. Yuan, S. Cao, A. Gasser, A. Weisheit, I. Kelbassa, and M. Zhong, Laser Additive Manufacturing of Ultrafine TiC Particle Reinforced Inconel 625 Based Composite Parts: Tailored Microstructures and Enhanced Performance, Mater. Sci. Eng.: A., 2015, 635, p 118–128. https://doi.org/10.1016/j.msea.2015.03.043

    Article  CAS  Google Scholar 

  2. M. Baumers, P. Dickens, C. Tuck, and R. Hague, The Cost of Additive Manufacturing: Machine Productivity, Economies of Scale and Technology-Push, Technol. Forecast. Soc. Chang., 2016, 102, p 193–201. https://doi.org/10.1016/j.techfore.2015.02.015

    Article  Google Scholar 

  3. S.A. Raji, A.P.I. Popoola, S.L. Pityana, O.M. Popoola, F.O. Aramide, M. Tlotleng, and N.K.K. Arthur, Laser Based Additive Manufacturing Technology for Fabrication of Titanium Aluminide-Based Composites in Aerospace Component Applications,  Environmental Impact of Aviation and Sustainable Solutions, IntechOpen, 2019. https://doi.org/10.5772/intechopen.85538.

  4. X. Zhang, C. Li, M. Zheng, Z. Ye, X. Yang, and J. Gu, Anisotropic Tensile Behavior of Ti-47Al-2Cr-2Nb Alloy Fabricated by Direct Laser Deposition, Addit. Manuf., 2020 https://doi.org/10.1016/j.addma.2020.101087

    Article  Google Scholar 

  5. M. Tlotleng, Microstructural Properties of Heat-Treated LENS In Situ Additively Manufactured Titanium Aluminide, J. Mater. Eng. Perform., 2019, 28(2), p 701–708. https://doi.org/10.1007/s11665-018-3789-5

    Article  CAS  Google Scholar 

  6. B. Onuike, B. Heer, and A. Bandyopadhyay, Additive Manufacturing of Inconel 718—Copper Alloy Bimetallic Structure using Laser Engineered Net Shaping (LENS™), Addit. Manuf., 2018, 21, p 133–140. https://doi.org/10.1016/j.addma.2018.02.007

    Article  CAS  Google Scholar 

  7. Y. Hu, F. Ning, H. Wang, W. Cong, and B. Zhao, Laser Engineered Net Shaping of Quasi-Continuous Network Microstructural TiB Reinforced Titanium Matrix Bulk Composites: Microstructure and Wear Performance, Opt. Laser Technol., 2018, 99, p 174–183. https://doi.org/10.1016/j.optlastec.2017.08.032

    Article  CAS  Google Scholar 

  8. M. Tlotleng and S. Pityana, Effects of Al and Heat Treatment on the Microstructure and Hardness of Ti-Al Synthesized via In Situ Melting using LENS, Metals., 2019, 9(6), p 623. https://doi.org/10.3390/met9060623

    Article  CAS  Google Scholar 

  9. A.R.C. Sharman, J.I. Hughes, and K. Ridgway, Characterisation of Titanium Aluminide Components Manufactured by Laser Metal Deposition, Intermetallics, 2018, 93, p 89–92. https://doi.org/10.1016/j.intermet.2017.11.013

    Article  CAS  Google Scholar 

  10. Y. Wu, X. Cheng, S. Zhang, D. Liu, and H. Wang, Microstructure and Phase Evolution in γ-TiAl/Ti2AlNb Dual Alloy Fabricated by Direct Metal Deposition, Intermetallics, 2019, 106, p 26–35. https://doi.org/10.1016/j.intermet.2018.12.008

    Article  CAS  Google Scholar 

  11. M. Tlotleng, B. Masina, and S.L. Pityana, Characteristics of laser In-situ alloyed titanium aluminides coatings, International Conference on Sustainable Materials Processing and Manufacturing, SMPM 2017, 23-25 January 2017, Kruger National Park, South Africa, Procedia Manufacturing. 7 (2017) 39-45. https://doi.org/10.1016/j.promfg.2016.12.013.

  12. S.E. Hoosain, S. Pityana, C.S. Freemantle, and M. Tlotleng, Heat treatment of In situ Laser-Fabricated Titanium Aluminide, Metals., 2018, 8(9), p 655. https://doi.org/10.3390/met8090655

    Article  CAS  Google Scholar 

  13. S.A. Raji, A.P.I. Popoola, S.L. Pityana, and O.M. Popoola, Characteristic Effects of Alloying Elements on β Solidifying Titanium Aluminides: A Review, Heliyon., 2020, 6(7), p e04463. https://doi.org/10.1016/j.heliyon.2020.e04463

    Article  Google Scholar 

  14. R.M. Imayev, V.M. Imayev, M. Oehring, and F. Appel, Alloy Design Concepts for Refined Gamma Titanium Aluminide Based Alloys, Intermetallics, 2007, 15(4), p 451–460. https://doi.org/10.1016/j.intermet.2006.05.003

    Article  CAS  Google Scholar 

  15. L.E. Murr, S.M. Gaytan, A. Ceylan, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, and R.B. Wicker, Characterization of Titanium Aluminide Alloy Components Fabricated by Additive Manufacturing using Electron Beam Melting, Acta Mater., 2010, 58(5), p 1887–1894. https://doi.org/10.1016/j.actamat.2009.11.032

    Article  CAS  Google Scholar 

  16. E. Schwaighofer, B. Rashkova, H. Clemens, A. Stark, and S. Mayer, Effect of Carbon Addition on Solidification Behavior, Phase Evolution and Creep Properties of an Intermetallic β-Stabilized γ-TiAl Based Alloy, Intermetallics, 2014, 46, p 173–184. https://doi.org/10.1016/j.intermet.2013.11.011

    Article  CAS  Google Scholar 

  17. J. Liu, M. Dahmen, V. Ventzke, N. Kashaev, and R. Poprawe, The Effect of Heat Treatment on Crack Control and Grain Refinement in Laser Beam Welded Β-Solidifying TiAl-Based Alloy, Intermetallics, 2013, 40, p 65–70. https://doi.org/10.1016/j.intermet.2013.04.007

    Article  CAS  Google Scholar 

  18. B.K. Singh, V.A. Kumar, R.K. Gupta, and A.K. Kanjarla, Evolution of Microstructure in Niobium Rich (α2 + γ) Based Titanium Aluminide Alloy During Hot Compression, Mater. Sci. Eng., A, 2019, 754, p 708–718. https://doi.org/10.1016/j.msea.2019.03.111

    Article  CAS  Google Scholar 

  19. P. Erdely, P. Staron, E. Maawad, N. Schell, H. Clemens, and S. Mayer, Lattice and Phase Strain Evolution During Tensile Loading of an Intermetallic, Multi-Phase γ-TiAl Based Alloy, Acta Mater., 2018, 158, p 193–205. https://doi.org/10.1016/j.actamat.2018.07.062

    Article  CAS  Google Scholar 

  20. M. Li, X. Wu, Y. Yang, Q. Wei, C. Yan, C. Cai, J. Liu, W. Li, and Y. Shi, TiAl/RGO (Reduced Graphene Oxide) Bulk Composites with Refined Microstructure and Enhanced Nanohardness Fabricated by Selective Laser Melting (SLM), Mater. Charact., 2018, 143, p 197–205. https://doi.org/10.1016/j.matchar.2018.05.040

    Article  CAS  Google Scholar 

  21. M. Seifi, A.A. Salem, D.P. Satko, U. Ackelid, S.L. Semiatin, and J.J. Lewandowski, Effects of HIP on Microstructural Heterogeneity, Defect Distribution and Mechanical Properties of Additively Manufactured EBM Ti-48Al-2Cr-2Nb, J. Alloy. Compd., 2017, 729, p 1118–1135. https://doi.org/10.1016/j.jallcom.2017.09.163

    Article  CAS  Google Scholar 

  22. A. Seidel, S. Saha, T. Maiwald, J. Moritz, S. Polenz, A. Marquardt, J. Kaspar, T. Finaske, E. Lopez, F. Brueckner, and C. Leyens, Intrinsic Heat Treatment within Additive Manufacturing of Gamma Titanium Aluminide Space Hardware, JOM., 2019, 71(4), p 1513–1519. https://doi.org/10.1007/s11837-019-03382-2

    Article  CAS  Google Scholar 

  23. T. Klein, B. Rashkova, D. Holec, H. Clemens, and S. Mayer, Silicon Distribution and Silicide Precipitation During Annealing in an Advanced Multi-Phase γ-TiAl Based Alloy, Acta Mater., 2016, 110, p 236–245. https://doi.org/10.1016/j.actamat.2016.03.050

    Article  CAS  Google Scholar 

  24. H.Z. Niu, Y.Y. Chen, S.L. Xiao, and L.J. Xu, Microstructure Evolution and Mechanical Properties of a novel Beta γ-TiAl Alloy, Intermetallics, 2012, 31, p 225–231. https://doi.org/10.1016/j.intermet.2012.07.012

    Article  CAS  Google Scholar 

  25. H. Clemens, W. Wallgram, S. Kremmer, V. Güther, A. Otto, and A. Bartels, Design of Novel β-Solidifying TiAl Alloys with Adjustable β/B2-Phase Fraction and Excellent Hot-Workability, Adv. Eng. Mater., 2008, 10(8), p 707–713. https://doi.org/10.1002/adem.200800164

    Article  CAS  Google Scholar 

  26. J.H. Lee, H.K. Park, J.H. Kim, J.H. Jang, S.K. Hong, and I.H. Oh, Constitutive Behavior and Microstructural Evolution in Ti-Al-Si Ternary Alloys Processed by Mechanical Milling and Spark Plasma Sintering, J. Market. Res., 2020, 9, p 2247–2258. https://doi.org/10.1016/j.jmrt.2019.12.056

    Article  CAS  Google Scholar 

  27. F.S. Sun and F.S. Froes, Precipitation of Ti5Si3 Phase in TiAl Alloys, Mater. Sci. Eng., A, 2002, 328(1–2), p 113–121. https://doi.org/10.1016/S0921-5093(01)01678-1

    Article  Google Scholar 

  28. A. Knaislová, P. Novák, J. Kopeček, and F. Průša, Properties Comparison of Ti-Al-Si Alloys Produced by Various Metallurgy Methods, Materials., 2019, 12(19), p 3084. https://doi.org/10.3390/ma12193084

    Article  CAS  Google Scholar 

  29. A. Knaislová, J. Linhart, P. Novák, F. Průša, J. Kopeček, F. Laufek, and D. Vojtěch, Preparation of TiAl15Si15 Intermetallic Alloy by Mechanical Alloying and the Spark Plasma Sintering Method, Powder Metall., 2019, 62(1), p 54–60. https://doi.org/10.1080/00325899.2019.1569812

    Article  CAS  Google Scholar 

  30. A. Knaislová, P. Novák, M. Cabibbo, F. Průša, C. Paoletti, L. Jaworska, and D. Vojtěch, Combination of Reaction Synthesis and Spark Plasma Sintering in Production of Ti-Al-Si Alloys, J. Alloy. Compd., 2018, 752, p 317–326. https://doi.org/10.1016/j.jallcom.2018.04.187

    Article  CAS  Google Scholar 

  31. A. Knaislová, P. Novák, S. Cygan, L. Jaworska, and M. Cabibbo, High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti-Al-Si Alloys, Materials., 2017, 10(5), p 465. https://doi.org/10.3390/ma10050465

    Article  CAS  Google Scholar 

  32. A. Knaislová, P. Novák, F. Průša, M. Cabibbo, L. Jaworska, and D. Vojtěch, High-temperature Oxidation of Ti-Al-Si Alloys Prepared by Powder Metallurgy, J. Alloy. Compd., 2019, 810, p 151895. https://doi.org/10.1016/j.jallcom.2019.151895

    Article  CAS  Google Scholar 

  33. J.S. Wu, P.A. Beaven, and R. Wagner, The Ti3(Al, Si) + Ti5(Si, Al)3 Eutectic Reaction in the Ti-Al-Si System, Scr. Metall. Mater., 1990, 24(1), p 207–212. https://doi.org/10.1016/0956-716X(90)90593-6

    Article  CAS  Google Scholar 

  34. J.H. Lee, H.K. Park, J.H. Jang, S.K. Hong, and I.H. Oh, Amorphization/Crystallization Behaviors of Ti50Al45Si5 Multi-Component Powder Treated by Mechanical Alloying and Subsequent Heat Treatment, J. Alloy. Compd., 2019, 797, p 612–621. https://doi.org/10.1016/j.jallcom.2019.05.047

    Article  CAS  Google Scholar 

  35. A. Knaislová, P. Novák, and F. Průša, Preparation of Ti-Al-Si Alloys by Powder Metallurgy, Manuf. Technol., 2016, 16, p 1274–1278. https://doi.org/10.21062/ujep/x.2016/a/1213-2489/MT/16/6/1274

    Article  Google Scholar 

  36. X.W. Du, J.N. Wang, and J. Zhu, The Influence of Si Alloying on the Crept Microstructure and Property of a TiAl Alloy Prepared by Powder Metallurgy, Intermetallics, 2001, 9(9), p 745–753. https://doi.org/10.1016/S0966-9795(01)00041-3

    Article  CAS  Google Scholar 

  37. H.R. Jiang, Z.L. Wang, X.R. Feng, Z.Q. Dong, L. Zhang, and L.I.U. Yong, Effects of Nb and Si on High Temperature Oxidation of TiAl, Trans. Nonferrous Met. Soc. China., 2008, 18(3), p 512–517. https://doi.org/10.1016/S1003-6326(08)60090-4

    Article  CAS  Google Scholar 

  38. G. Baudana, S. Biamino, B. Klöden, A. Kirchner, T. Weißgärber, B. Kieback, M. Pavese, D. Ugues, P. Fino, and C. Badini, Electron Beam Melting of Ti-48Al-2Nb-0.7 Cr-03 Si: Feasibility Investigation, Intermetallics, 2016, 73, p 43–49. https://doi.org/10.1016/j.intermet.2016.03.001

    Article  CAS  Google Scholar 

  39. T.T. Cheng, M.R. Willis, and I.P. Jones, Effects of Major Alloying Additions on the Microstructure and Mechanical Properties of γ-TiAl, Intermetallics, 1999, 7(1), p 89–99. https://doi.org/10.1016/S0966-9795(98)00016-8

    Article  CAS  Google Scholar 

  40. M. Todai, T. Nakano, T. Liu, H.Y. Yasuda, K. Hagihara, K. Cho, M. Ueda, and M. Takeyama, Effect of Building Direction on the Microstructure and Tensile Properties of Ti-48Al-2Cr-2Nb Alloy Additively Manufactured by Electron Beam Melting, Addit. Manuf., 2017, 13, p 61–70. https://doi.org/10.1016/j.addma.2016.11.001

    Article  CAS  Google Scholar 

  41. C. Kenel, G. Dasargyri, T. Bauer, A. Colella, A.B. Spierings, C. Leinenbach, and K. Wegener, Selective Laser Melting of an Oxide Dispersion Strengthened (ODS) γ-TiAl Alloy Towards Production of complex Structures, Mater. Des., 2017, 134, p 81–90. https://doi.org/10.1016/j.matdes.2017.08.034

    Article  CAS  Google Scholar 

  42. F. Zhang, M. Yang, A.T. Clare, X. Lin, H. Tan, and Y. Chen, Microstructure and Mechanical Properties of Ti-2Al Alloyed with Mo Formed in Laser Additive Manufacture, J. Alloy. Compd., 2017, 727, p 821–831. https://doi.org/10.1016/j.jallcom.2017.07.324

    Article  CAS  Google Scholar 

  43. J.R. Cahoon, W.H. Broughton, and A.R. Kutzak, The Determination of Yield Strength from Hardness Measurements, Metall. Trans., 1971, 2(7), p 1979–1983. https://doi.org/10.1007/BF02913433

    Article  CAS  Google Scholar 

  44. E.J. Pavlina and C.J. Van Tyne, Correlation of Yield Strength and Tensile Strength with Hardness for Steels, J. Mater. Eng. Perform., 2008, 17(6), p 888–893. https://doi.org/10.1007/s11665-008-9225-5

    Article  CAS  Google Scholar 

  45. H. Chen and L.X. Cai, Theoretical Conversions of Different Hardness and Tensile Strength for Ductile Materials Based on Stress-Strain Curves, Metall. and Mater. Trans. A., 2018, 49(4), p 1090–1101. https://doi.org/10.1007/s11661-018-4468-8

    Article  CAS  Google Scholar 

  46. B. Lin, W. Chen, Y. Yang, F. Wu, and Z. Li, Anisotropy of Microstructure and Tensile Properties of Ti-48Al-2Cr-2Nb Fabricated by Electron Beam Melting, J. Alloys Compd., 2020 https://doi.org/10.1016/j.jallcom.2020.154684

    Article  Google Scholar 

  47. M. Simonelli, D.G. McCartney, P. Barriobero-Vila, N.T. Aboulkhair, Y.Y. Tse, A. Clare, and R. Hague, The Influence of Iron in Minimizing the Microstructural Anisotropy of Ti-6Al-4V Produced by Laser Powder-Bed Fusion, Metall. Mater. Trans. A., 2020 https://doi.org/10.1007/s11661-020-05692-6

    Article  Google Scholar 

  48. M.N. Mathabathe, S. Govender, A.S. Bolokang, R.J. Mostert, and C.W. Siyasiya, Phase Transformation and Microstructural Control of the α-Solidifying γ-Ti-45Al-2Nb-0.7 Cr-0.3 Si Intermetallic Alloy, J. Alloys Compd., 2018, 757, p 8–15. https://doi.org/10.1016/j.jallcom.2018.05.051

    Article  CAS  Google Scholar 

  49. P. Gao and Z. Wang, Tailored Microstructure and Enhanced Comprehensive Mechanical Properties of Selective Laser Melted Ti-40Al-9V-0.5 Y Alloy after Aging Treatment, Mater. Sci. Eng.: A., 2020, 780, p 139183. https://doi.org/10.1016/j.msea.2020.139183

    Article  CAS  Google Scholar 

  50. L. Song, L. Wang, M. Oehring, X. Hu, F. Appel, U. Lorenz, F. Pyczak, and T. Zhang, Evidence for Deformation Twinning of the D019-α2 Phase in a High Nb Containing TiAl Alloy, Intermetallics, 2019, 109, p 91–96. https://doi.org/10.1016/j.intermet.2019.03.014

    Article  CAS  Google Scholar 

  51. L. Song, L. Wang, T. Zhang, J. Lin, and F. Pyczak, Microstructure and phase transformations of ωo-Ti4Al3Nb based alloys after quenching and subsequent aging at intermediate temperatures, J. Alloy. Compd., 2020, 821, p 153387. https://doi.org/10.1016/j.jallcom.2019.153387

    Article  CAS  Google Scholar 

  52. J.K. Kim, J.H. Kim, J.Y. Kim, S.H. Park, S.W. Kim, M.H. Oh, and S.E. Kim, Producing Fine Fully Lamellar Microstructure for Cast γ-TiAl without Hot Working, Intermetallics, 2020, 120, p 106728. https://doi.org/10.1016/j.intermet.2020.106728

    Article  CAS  Google Scholar 

  53. M.J. Blackburn, Some Aspects of Phase Transformations in Titanium Alloys, Science, Technology, and Application of Titanium. R.I. Jaffee Ed., Oxford Pergamon Press Ltd: Boeing Scientific Research Labs, Seattle, USA, 1970, p 633–643. https://doi.org/10.1016/B978-0-08-006564-9.50071-3

    Chapter  Google Scholar 

  54. X. Xu, J. Lin, J. Guo, X. Wang, and X. Yu, Microstructure and Properties of Friction Welding Joint of Ti-45Al-85Nb-0.2W-0.2B-0.02Y Alloy, Intermetallics, 2019, 112, p 106540. https://doi.org/10.1016/j.intermet.2019.106540

    Article  CAS  Google Scholar 

  55. M. Oehring, A. Stark, J.D.H. Paul, T. Lippmann, and F. Pyczak, Microstructural Refinement of Boron-Containing β-Solidifying γ-Titanium Aluminide Alloys through Heat Treatments in the β Phase Field, Intermetallics, 2013, 32, p 12–20. https://doi.org/10.1016/j.intermet.2012.08.010

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support (scholarship grant) from the African Laser Centre-National Laser Centre; Council of Scientific and Industrial Research (ALC-NLC; CSIR), Project Number LHIP500 Task ALC S100. The authors also acknowledge Mr Nana Kwamina Kum Arthur and Mr Paul Lekoadi both of CSIR for their assistance while carrying out the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadiq Abiola Raji.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raji, S.A., Popoola, A.P.I., Pityana, S.L. et al. Microstructure and Mechanical Properties of Heat-Treated Ti-Al-Si Alloy Produced via Laser In Situ Alloying. J. of Materi Eng and Perform 30, 3321–3332 (2021). https://doi.org/10.1007/s11665-021-05681-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05681-9

Keywords

Navigation