Skip to main content
Log in

Floating-Bobbin-Tool Friction Stir Welding of 20-mm-Thick AA5456-H112 Plates: Microstructure and Weld Strength

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The study aims at investigating the influence of grain size on microhardness across the thickness in the stir zone of 20-mm-thick AA5456-H112 plates joined by floating-bobbin-tool friction stir welding at various feed rates and spindle speeds. Contrary to the conventional friction stir welding, in all the joined samples, the grain size at the bottom layer was coarser than that in the top and middle layers of the stir zone, and the microhardness values were always higher in the top layer of the stir zone. It was found that the microhardness at the top, middle, and bottom layers of the stir zone, as well as the size and compaction of the intermetallic particles in the stirred region, is lower at higher spindle speed and slower feed rate. However, under these conditions, the recrystallized grain size is increased in all three layers, and the intermetallic particles become fragmented and dispersed, as predicted by the Hall–Petch relationship. The Hall–Petch equation between microhardness and grain size in the stirred region indicated that zones with finer grain size have a higher microhardness, whereas a decrease in microhardness occurs with increasing grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. X. Meng, Y. Huang, J. Cao, J. Shen, and J.F. dos Santos, Recent Progress on Control Strategies for Inherent Issues in Friction Stir Welding, Prog. Mater. Sci., 2021, 115, p 100706

    Article  CAS  Google Scholar 

  2. M.K. Gupta, Friction Stir Process: A Green Fabrication Technique for Surface Composites—A Review Paper, SN Appl. Sci., 2020, 2(4), p 532

    Article  Google Scholar 

  3. M.K. Gupta, Effects of Tool Pin Profile and Feed Rate on Wear Performance of Pine Leaf Ash/Al Composite Prepared by Friction Stir Processing, J. Adhes. Sci. Technol., 2020 https://doi.org/10.1080/01694243.2020.1800290

    Article  Google Scholar 

  4. V.P. Singh, S.K. Patel, A. Ranjan, and B. Kuriachen, Recent Research Progress in Solid State Friction-Stir Welding of Aluminium-Magnesium Alloys: A Critical Review, J. Mater. Res. Technol., 2020, 9(3), p 6217–6256

    Article  CAS  Google Scholar 

  5. M.K. Gupta, Effects of Tool Profile on Mechanical Properties of Aluminium Alloy Al 1120 Friction Stir Welds, J. Adhes. Sci. Technol., 2020, 34(18), p 2000–2010

    Article  CAS  Google Scholar 

  6. Y. Li, D. Sun, and W. Gong, Effect of Tool Rotational Speed on the Microstructure and Mechanical Properties of Bobbin Tool Friction Stir Welded 6082-T6 Aluminium Alloy, Metals (Basel), 2019, 9(8), p 894

    Article  Google Scholar 

  7. C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, and Z.Y. Ma, Microstructure and Mechanical Properties of Double-Side Friction Stir Welded 6082Al Ultra-Thick Plates, J. Mater. Sci. Technol., 2020, 41, p 105–116

    Article  Google Scholar 

  8. W. Xu, Y. Luo, W. Zhang, and M. Fu, Comparative Study on Local and Global Mechanical Properties of Bobbin Tool and Conventional Friction Stir Welded 7085-T7452 Aluminum Thick Plate, Editor. Off. J. Mater. Sci. Technol., 2018, 34(1), p 173–184

    Article  Google Scholar 

  9. M. Imam, Y. Sun, H. Fujii, N. Ma, S. Tsutsumi, and H. Murakawa, Microstructural Characteristics and Mechanical Properties of Friction Stir Welded Thick 5083 Aluminum Alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2017, 48(1), p 208–229

    Article  CAS  Google Scholar 

  10. M. Ahmed, B. Wynne, W. Rainforth, A. Addison, J. Martin, and P. Threadgill, Effect of Tool Geometry and Heat Input on the Hardness, Grain Structure, and Crystallographic Texture of Thick-Section Friction Stir-Welded Aluminium, Metall. Mater. Trans. A, 2019, 50, p 271–284

    Article  CAS  Google Scholar 

  11. K. Fuse and V. Badheka, Bobbin Tool Friction Stir Welding: A Review, Sci. Technol. Weld. Join., 2019, 24(4), p 277–304

    Article  Google Scholar 

  12. G.Q. Wang, Y.H. Zhao, and Y.Y. Tang, Research Progress of Bobbin Tool Friction Stir Welding of Aluminum Alloys: A Review, Acta Metall. Sin. Engl. Lett., 2020, 33(1), p 13–29

    Article  CAS  Google Scholar 

  13. C. Yang, D.R. Ni, P. Xue, B.L. Xiao, W. Wang, K.S. Wang, and Z.Y. Ma, A Comparative Research on Bobbin Tool and Conventional Friction Stir Welding of Al-Mg-Si Alloy Plates, Mater. Charact., 2018, 145, p 20–28

    Article  CAS  Google Scholar 

  14. M. Esmaily, N. Mortazavi, W. Osikowicz, H. Hindsefelt, J.E. Svensson, M. Halvarsson, J. Martin, and L.G. Johansson, Bobbin and Conventional Friction Stir Welding of Thick Extruded AA6005-T6 Profiles, Mater. Des., 2016, 108, p 114–125

    Article  CAS  Google Scholar 

  15. Y. Li, D. Sun, W. Gong, and L. Liu, Effects of Postweld Aging on the Microstructure and Properties of Bobbin Tool Friction Stir-Welded 6082-T6 Aluminum Alloy, Int. J. Miner. Metall. Mater., 2019, 26(7), p 849–857

    Article  CAS  Google Scholar 

  16. D. Wu, W.Y. Li, Y.J. Gao, J. Yang, Y. Su, Q. Wen, and A. Vairis, Effect of an Improved Pin Design on Weld Formability and Mechanical Properties of Adjustable-Gap Bobbin-Tool Friction Stir Welded Al-Cu Aluminum Alloy Joints, J. Manuf. Process., 2020, 58, p 1182–1188

    Article  Google Scholar 

  17. Q. Wen, W. Li, V. Patel, Y. Gao, and A. Vairis, Investigation on the Effects of Welding Speed on Bobbin Tool Friction Stir Welding of 2219 Aluminum Alloy, Met. Mater. Int., 2020, 26(12), p 1830–1840

    Article  Google Scholar 

  18. L. Yajie, Q. Fengming, L. Cuirong, and W. Zhisheng, Flow Law, Microstructure and Corrosion Behavior of Friction Stir Welded 5A06 Alloy, Rare Met. Mater. Eng., 2018, 47(8), p 2353–2359

    Article  Google Scholar 

  19. M. Mardalizadeh, M. Khandaei, and M.A. Safarkhanian, Influence of Travel Speed on the Microstructural Evaluation and Mechanical Characteristics of Bobbin Tool Friction Stir-Welded Thick AA5456-H112 Plates, J. Adhes. Sci. Technol., 2021, 35(1), p 90–109

    Article  CAS  Google Scholar 

  20. ASTM E 112-96, Standard Test Methods for Determining Average Grain Size, 2010, 96 (2004). https://doi.org/10.1520/E0112-10. Copyright

  21. L. Zhou, G.H. Li, C.L. Liu, J. Wang, Y.X. Huang, J.C. Feng, and F.X. Meng, Microstructural Characteristics and Mechanical Properties of Al-Mg-Si Alloy Self-reacting Friction Stir Welded Joints, Sci. Technol. Weld. Join., 2017, 22(5), p 438–445

    Article  CAS  Google Scholar 

  22. F.F. Wang, W.Y. Li, J. Shen, Z.H. Zhang, J.L. Li, and J.F. Dos Santos, Global and Local Mechanical Properties and Microstructure of Bobbin Tool Friction-Stir-Welded Al-Li Alloy, Sci. Technol. Weld. Join., 2016, 21(6), p 479–483

    Article  CAS  Google Scholar 

  23. G. Chen, S. Zhang, Y. Zhu, C. Yang, and Q. Shi, Thermo-Mechanical Analysis of Friction Stir Welding: A Review on Recent Advances, Acta Metall. Sin. Engl. Lett., 2020, 33(1), p 3–12

    Article  Google Scholar 

  24. G. Li, L. Zhou, S. Luo, Y. Huang, N. Guo, H. Zhao, and X. Song, Effect of Self-reacting Friction Stir Welding on Microstructure and Mechanical Properties of Mg-Al-Zn Alloy Joints, J. Manuf. Process., 2019, 37, p 1–10

    Article  Google Scholar 

  25. P.L. Threadgill, M.M.Z. Ahmed, J.P. Martin, J.G. Perrett, and B.P. Wynne, The Use of Bobbin Tools for Friction Stir Welding of Aluminium Alloys, Mater. Sci. Forum, 2010, 638–642, p 1179–1184

    Article  Google Scholar 

  26. Y. Huang, L. Wan, T. Huang, Z. Lv, L. Zhou, and J. Feng, The Weld Formation of Self-support Friction Stir Welds for Aluminum Hollow Extrusion, Int. J. Adv. Manuf. Technol., 2016, 87(1–4), p 1067–1075

    Article  Google Scholar 

  27. L. Wan, Y. Huang, W. Guo, S. Lv, and J. Feng, Mechanical Properties and Microstructure of 6082-T6 Aluminum Alloy Joints by Self-support Friction Stir Welding, J. Mater. Sci. Technol., 2014, 30(12), p 1243–1250

    Article  CAS  Google Scholar 

  28. G. Buffa, G. Campanile, L. Fratini, and A. Prisco, Friction Stir Welding of Lap Joints: Influence of Process Parameters on the Metallurgical and Mechanical Properties, Mater. Sci. Eng. A, 2009, 519(1–2), p 19–26

    Article  Google Scholar 

  29. M. Imam, Y. Sun, H. Fujii, M.A. Ninshu, S. Tsutsumi, S. Ahmed, V. Chintapenta, and H. Murakawa, Deformation Characteristics and Microstructural Evolution in Friction Stir Welding of Thick 5083 Aluminum Alloy, Int. J. Adv. Manuf. Technol., 2018, 99(1–4), p 663–681

    Article  Google Scholar 

  30. H. Zhang, M. Wang, X. Zhang, and G. Yang, Microstructural Characteristics and Mechanical Properties of Bobbin Tool Friction Stir Welded 2A14-T6 Aluminum Alloy, Mater. Des., 2015, 65, p 559–566

    Article  CAS  Google Scholar 

  31. X. Cao and M. Jahazi, Effect of Tool Rotational Speed and Probe Length on Lap Joint Quality of a Friction Stir Welded Magnesium Alloy, Mater. Des., 2011, 32, p 1–11

    Article  Google Scholar 

  32. L. Zhou, G.H. Li, C.L. Liu, J. Wang, Y.X. Huang, J.C. Feng, and F.X. Meng, Effect of Rotation Speed on Microstructure and Mechanical Properties of Self-reacting Friction Stir Welded Al-Mg-Si Alloy, Int. J. Adv. Manuf. Technol., 2017, 89(9–12), p 3509–3516

    Article  Google Scholar 

  33. L. Zhou, K. Nakata, J. Liao, and T. Tsumura, Microstructural Characteristics and Mechanical Properties of Non-combustive Mg-9Al-Zn-Ca Magnesium Alloy Friction Stir Welded Joints, Mater. Des., 2012, 42, p 505–512

    Article  CAS  Google Scholar 

  34. O.S. Salih, N. Neate, H. Ou, and W. Sun, Influence of Process Parameters on the Microstructural Evolution and Mechanical Characterisations of Friction Stir Welded Al-Mg-Si Alloy, J. Mater. Process. Technol., 2020, 275, p 116366

    Article  CAS  Google Scholar 

  35. S.O. Gashti, A. Fattah-Alhosseini, Y. Mazaheri, and M.K. Keshavarz, Effects of Grain Size and Dislocation Density on Strain Hardening Behavior of Ultrafine Grained AA1050 Processed by Accumulative Roll Bonding, J. Alloys Compd., 2016, 658, p 854–861

    Article  CAS  Google Scholar 

  36. Y.S. Sato, S.H.C. Park, and H. Kokawa, Microstructural Factors Governing Hardness in Friction-Stir Welds of Solid-Solution-Hardened Al Alloys, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2001, 32(12), p 3033–3042

    Article  Google Scholar 

  37. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon, Microhardness Measurements and the Hall–Petch Relationship in an Al-Mg Alloy with Submicrometer Grain Size, Acta Mater., 1996, 44(11), p 4619–4629

    Article  CAS  Google Scholar 

  38. G. Li, L. Zhou, S. Luo, F. Dong, and N. Guo, Microstructure and Mechanical Properties of Bobbin Tool Friction Stir Welded ZK60 Magnesium Alloy, Mater. Sci. Eng. A, 2020, 776, p 138953

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Khandaei.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardalizadeh, M., Khandaei, M. & Safarkhanian, M.A. Floating-Bobbin-Tool Friction Stir Welding of 20-mm-Thick AA5456-H112 Plates: Microstructure and Weld Strength. J. of Materi Eng and Perform 30, 3284–3297 (2021). https://doi.org/10.1007/s11665-021-05669-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05669-5

Keywords

Navigation