Skip to main content
Log in

Deformation Behavior and Processing Maps of 42CrMo Alloy Casting Blank Subjected to Double-Pass Isothermal Compression

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The hot deformation behavior of 42CrMo alloy casting blank was studied using a double-pass isothermal compression. The effects of strain allocation in different passes on the stress softening degree and processing maps were analyzed. It is found that the stresses at the double-pass strains of 0.45 + 0.45 and 0.3 + 0.6 decrease with increasing temperature and decreasing strain rate. The softening fraction of recrystallization in deformation interval increases with increasing strain rate and temperature. The deformation behavior in the second-pass is significantly affected by the first-pass. The stress softening models considering partitioned strain at the double-pass compression are established, respectively. The deformation intervals exert an obvious effect on the efficiency of power dissipation (EPD) and optimum parameters. The main mechanism of microstructure evolution is dominated by dynamic recovery accompanied by a slight DRX. By combining the developed processing maps and microstructures, the optimum processing windows in the double-pass strain of 045 + 0.45 are found to be at a strain of 0.8, temperatures of 1000-1200 °C and strain rates of 0.45-1 s−1 with EPD of 38-49%, and for the double-pass strains of 0.3 + 0.6, the optimum windows at a strain of 0.8, temperatures of 1050-1200 °C and strain rates of 0.4-1 s−1 with EPD of 40-48% are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.C. Lin, M.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42, p 470–477

    Article  CAS  Google Scholar 

  2. D. Chaouch, S. Guessasma, and A. Sadok, Finite Element Simulation Coupled to Optimisation Stochastic Process to Assess the Effect of Heat Treatment on the Mechanical Properties of 42CrMo4 Steel, Mater. Des., 2012, 34, p 679–684

    Article  CAS  Google Scholar 

  3. F.C. Qin, Y.T. Li, H.P. Qi, and L. Ju, Microstructure–Texture–Mechanical Properties in Hot Rolling of a Centrifugal Casting Ring Blank, J. Mater. Eng. Perform., 2016, 25(3), p 1237–1248

    Article  CAS  Google Scholar 

  4. Y.T. Li, L. Ju, H.P. Qi, F. Zhang, G.Z. Cheng, and M.L. Wang, Technology and Experiments of 42CrMo Bearing Ring Forming Based on Casting Ring Blank, Chin. J. Mech. Eng. Eng., 2014, 27(2), p 417–427

    Google Scholar 

  5. F.C. Qin, Y.T. Li, H.P. Qi, and Z.H. Lv, Deformation Behavior and Microstructure Evolution of as-Cast 42CrMo Alloy in Isothermal and Non-isothermal Compression, J. Mater. Eng. Perform., 2016, 25(11), p 5040–5048

    Article  CAS  Google Scholar 

  6. H.P. Qi and Y.T. Li, Metadynamic Recrystallization of the as-Cast 42CrMo Steel After Normalizing and Tempering during Hot Compression, Chin. J. Mech. Eng., 2012, 25(5), p 853–859

    Article  CAS  Google Scholar 

  7. F.C. Qin, Y.T. Li, H.P. Qi, and X.J. Wei, Microstructure and Mechanical Properties of as-Cast 42CrMo Ring Blank during Hot Rolling and Subsequent Quenching and Tempering, J. Mater. Eng. Perform., 2017, 26(3), p 1300–1310

    Article  CAS  Google Scholar 

  8. F.C. Qin, Y.T. Li, H.P. Qi, and L. Ju, Advances in Compact Manufacturing for Shape and Performance Controllability of Large-Scale Components—A Review, Chin. J. Mech. Eng., 2017, 30(1), p 7–21

    Article  Google Scholar 

  9. J. Fu, Y.T. Li, J.H. Fu, J.L. Song, B.F. Lei, and H.P. Qi, Dynamic Recrystallization Behavior of as-Cast 42CrMo Steel during Hot Compression Deformation, Mater. Mech. Eng., 2012, 36(2), p 91–95. ((in Chinese))

    CAS  Google Scholar 

  10. W.J. Xiao, J. Fu, and X.Y. Chen, Establishment of Constitutive Model for as-Cast 42CrMo Steel during Hot Compression Deformation, Hot Work. Technol., 2011, 40(9), p p105-107. ((in Chinese))

    Google Scholar 

  11. Y.C. Lin, S.C. Luo, L.X. Yin, and J. Huang, Microstructural Evolution and High Temperature Flow Behaviors of a Homogenized Sr-Modified Al-Si-Mg Alloy, J. Alloys Compd., 2018, 739, p 590–599

    Article  CAS  Google Scholar 

  12. F.L. Jiang and H. Zhang, Flow Stress and Static Softening of 7150 Aluminum Alloy during Isothermal Multistage Hot Compression, China Sci. Pap., 2015, 10(4), p 394–398

    Google Scholar 

  13. Q.Q. Lin, W.Z. Dong, Y.T. Li, H. Zhang, and Z.G. Wang, Microstructure SIMULATION of 2519 Aluminum Alloy in Multi-pass Hot Compression Process, Procedia Eng., 2014, 81, p 1259–1264

    Article  CAS  Google Scholar 

  14. M. Bambacha and S. Seuren, On Instabilities of Force and Grain Size Predictions in the Simulation of Multi-pass Hot Rolling Processes, J. Mater. Process. Technol., 2015, 216, p 95–113

    Article  Google Scholar 

  15. H.F. Zhang, B. Sheng, and H.H. Zhang, Simulation to the Grain Evolution of Micro Alloy Steel during Multi-pass Rolling, Shanghai Met., 2012, 34(6), p 43–46. ((in Chinese))

    CAS  Google Scholar 

  16. B. Fang, Z. Ji, M. Liu, G.F. Tian, C.C. Jia, T.T. Zeng, B.F. Hu, and C.C. Wang, Study on Constitutive Relationships and Processing Maps for FGH96 Alloy during Two-Pass Hot Deformation, Mater. Sci. Eng. A, 2014, 590, p 255–261

    Article  CAS  Google Scholar 

  17. B. Fang, Z. Ji, M. Liu, G.F. Tian, C.C. Jia, T.T. Zeng, B.F. Hu, and C.C. Wang, Critical Strain and Models of Dynamic Recrystallization for FGH96 Superalloy during Two-Pass Hot Deformation, Mater. Sci. Eng. A, 2014, 593, p 8–15

    Article  CAS  Google Scholar 

  18. B. Fang, Z. Ji, G.H. Tian, C.C. Jia, H. Benfu, and C.C. Wang, Flow Behavior for FGH96 Superalloy During Two-Pass Hot Deformation and Constitutive Relationship, Rare Met. Mater. Eng., 2014, 43(12), p 3089–3094. ((in Chinese))

    Google Scholar 

  19. S.L. Yang, J. Shen, X.W. Li, X.D. Yan, Y.A. Zhang, Z.H. Li, S.H. Huang, and B.Q. Xiong, Mechanical Behavior and Microstructure Evolution of Al-Cu-Li Alloy during Multi-pass Hot Deformation, Rare Met. Mater. Eng., 2017, 46(10), p 2825–2830

    Article  CAS  Google Scholar 

  20. K.P. Rao, Y.V.R.K. Prasad, and N. Hort, Hot Workability Characteristics of Cast and Homogenized Mg-3Sn-1Ca alloy, J. Mater. Process. Technol., 2008, 201(1), p 359–363

    Article  CAS  Google Scholar 

  21. R.H. Wu, Y. Liu, C. Geng, Q.Q. Lin, Y.F. Xiao, J.R. Xu, and W. Kang, Study on Hot Deformation Behavior and Intrinsic Workability of 6063 Aluminum Alloys Using 3D Processing Map, J. Alloys Compd., 2017, 713, p 212–221

    Article  Google Scholar 

  22. R.Y. Li, Y.H. Duan, L.S. Ma, and S. Chen, Flow Behavior, Dynamic Recrystallization and Processing Map of Mg-20Pb-1.6Al-0.4B Alloy, J. Mater. Eng. Perform., 2017, 26(5), p 2439–2451

    Article  CAS  Google Scholar 

  23. W.Z. Bao, L.K. Bao, D. Liu, D.Y.I. Qu, Z.Z. Kong, M.J. Peng, and Y.H. Duan, Constitutive Equations, Processing Maps, and Microstructures of Pb-Mg-Al-B-0.4Y Alloy under Hot Compression, J. Mater. Eng. Perform., 2020, 29(1), p 607–619

    Article  CAS  Google Scholar 

  24. Y.H. Duan, P. Li, L.S. Ma, and R.Y. Li, Dynamic Recrystallization and Processing Map of Pb-30Mg-9Al-1B Alloy during Hot Compression, Metall. Mater. Trans. A, 2017, 48, p 3419–3431

    Article  CAS  Google Scholar 

  25. Y.H. Duan, L.S. Ma, H.R. Qi, R.Y. Li, and P. Li, Developed Constitutive Models, Processing Maps and Microstructural Evolution of Pb-Mg-10Al-05B Alloy, Mater. Charact., 2017, 129, p 353–366

    Article  CAS  Google Scholar 

  26. H.Q. Chen, J.X. Bai, H.P. Qi, J.H. Fu, and Y.T. Li, Establishment of Hot Processing Maps and Hot Ring Rolling Process of 42CrMo steel, J. Mech. Eng., 2014, 50(16), p 89–96. ((in Chinese))

    Article  Google Scholar 

  27. F.C. Qin, H.P. Qi, Y.T. Li, C.Y. Liu, and H.Q. Qi, Relationship of Grain Size, Texture Distribution, and Mechanical Properties of 25Mn Casting Flange Blank Subjected to Hot Ring Rolling, J. Mater. Eng. Perform., 2021, 30(2), p 1128–1138

    Article  CAS  Google Scholar 

  28. F.C. Qin, H.P. Qi, Y.T. Li, and H.Q. Qi, Microstructure Evolution in Hot Ring Rolling of Centrifugal Casting Q235B Steel, Mater. Rep., 2020, 34(6), p 12132–12138. ((in Chinese))

    Google Scholar 

  29. G.A. He, L.M. Tan, F. Liu, L. Huang, Z.W. Huang, and L. Jiang, Revealing the Role of Strain Rate during Multi-pass Compression in an Advanced Polycrystalline Nickel Base Superalloy, Mater. Charact., 2017, 128, p 123–133

    Article  CAS  Google Scholar 

  30. Y.C. Lin, F. Wu, Q.W. Wang, D.D. Chen, and S.K. Singh, Microstructural Evolution of a Ni-Fe-Cr-Base Superalloy during Non-isothermal Two-Stage Hot Deformation, Vacuum, 2018, 151, p 283–293

    Article  CAS  Google Scholar 

  31. C. Chen, H.Q. Yin, X.H. Qu, and L. Zhu, The Research of Hot Deformation Resistance of Molybdenum, J. Plast. Eng., 2007, 14(2), p 7–10. ((in Chinese))

    CAS  Google Scholar 

  32. Y.V.R.K. Prasad, H.L. Gegel, and S.M. Doraivelu, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Mater. Trans. A, 1984, 15(10), p 1883–1892

    Article  Google Scholar 

  33. P.S. Robi and U.S. Dixit, Application of Neural Networks in Generating Processing Map for Hot Working, J. Mater. Process. Technol., 2003, 142(1), p 289–329

    Article  CAS  Google Scholar 

  34. Y.W. Xiao, Y.C. Lin, Y.Q. Jiang, X.Y. Zhang, G.D. Pang, D. Wang, and K.C. Zhou, A Dislocation Density-Based Model and Processing Maps of Ti-55511 Alloy with Bimodal Microstructures during Hot Compression in α + β Region, Mater. Sci. Eng. A, 2020, 790, p 139692

    Article  CAS  Google Scholar 

  35. Y.V.R.K. Prasad, S. Sasidhara, and V.K. Sikka, Characterization of Mechanisms of Hot Deformation of as-Cast Nickel Aluminide Alloy, Intermetallics, 2000, 8(9), p 987–995

    Article  CAS  Google Scholar 

  36. K.P. Rao, Y.V.R.K. Prasad, K. Suresha, N. Hort, and K.U. Kainer, Hot Deformation Behavior of Mg-2Sn-2Ca Alloy in as-Cast Condition and After Homogenization, Mater. Sci. Eng. A, 2012, 552, p 444–450

    Article  CAS  Google Scholar 

  37. R. Łyszkowski and J. Bystrzycki, Hot Deformation and Processing Maps of a Fe-Al Intermetallic Alloy, Mater. Charact., 2014, 96, p 196–205

    Article  Google Scholar 

  38. X. Li, S.Q. Lu, K.L. Wang, M.W. Fu, and C.X. Cao, Analysis and Comparison of the Instability Regimes in the Processing Maps Generated Using Different Instability Criteria for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy, Mater. Sci. Eng. A, 2013, 576, p 259–266

    Article  CAS  Google Scholar 

  39. A. Jenab and A.K. Taheri, Experimental Investigation of the Hot Deformation Behavior of AA7075: Development and Comparison of Flow Localization Parameter and Dynamic Material Model Processing Maps, Int. J. Mech. Sci., 2014, 78, p 97–105

    Article  Google Scholar 

  40. C. Gandhi, On Fracture Initiation Mechanisms and Dynamic Recrystallization during Hot Deformation of Pure Nickel, Metall. Trans. A, 1982, 13(7), p 1233–1238

    Article  Google Scholar 

  41. Y.C. Lin, Y.W. Xiao, Y.Q. Jiang, G.D. Pang, H.B. Li, X.Y. Zhang, and K.C. Zhou, Spheroidization and Dynamic Recrystallization Mechanisms of Ti-55511 Alloy with Bimodal Microstructures during Hot Compression in α + β Region, Mater. Sci. Eng. A, 2020, 782, p 139282

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the National Natural Science Foundation of China (No. 51875383), the Natural Science Foundation of Guangxi (Nos. 2019GXNSFAA245051 and 2018GXNSFBA281056), the Science and Technology Major Project of Guangxi (No. GKAA18242007), and the Open Funding of Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices (Nos. 20AA-8 and 20KF-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangcheng Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, F., Qi, H., Li, Y. et al. Deformation Behavior and Processing Maps of 42CrMo Alloy Casting Blank Subjected to Double-Pass Isothermal Compression. J. of Materi Eng and Perform 30, 3232–3242 (2021). https://doi.org/10.1007/s11665-021-05645-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05645-z

Keywords

Navigation