Skip to main content
Log in

Corrosion Behavior and Microstructural Characterization of Friction Stir Welded API X70 Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Friction stir welding (FSW) is an excellent alternative process used in pipelines circumferential welds due to fusion welded joint low corrosion resistance. This study describes the corrosion resistance as a function of the microstructural features resulting from an API X70 FSW welded joint. The microstructural features were examined by optical microscopy, scanning electron microscopy, and x-ray diffraction. The corrosion analysis was conducted employing potentiodynamic polarization tests using an electrochemical microcell, which allowed to test small circular areas delimited by a 2 mm in diameter O-ring gasket. The base metal and heat-affected zone were the most susceptible regions to corrosion due to their banded microstructures. The re-stirred-zone and stir zone were the most resistant regions to corrosion which was associated to grain refinement. The corrosion rate presented by the base metal and the heat-affected zone was approximately six times higher than the region of least susceptibility to corrosion, in this case, the re-stirred-zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author, (J.A. Avila), upon reasonable request.

References

  1. M.A. Mohtadi-Bonab, J.A. Szpunar, R. Basu, and M. Eskandari, The Mechanism of Failure by Hydrogen Induced Cracking in an Acidic Environment for API, 5L X70 Pipeline Steel, Int. J. Hydrogen Energy, 2015, 40(2), p 1096–1107. https://doi.org/10.1016/j.ijhydene.2014.11.057

    Article  CAS  Google Scholar 

  2. A. Thomas and J.A. Szpunar, Hydrogen Diffusion and Trapping in X70 Pipeline Steel, Int. J. Hydrogen Energy, 2019, 45(3), p 2390–2404. https://doi.org/10.1016/j.ijhydene.2019.11.096

    Article  CAS  Google Scholar 

  3. T. Schaupp, W. Ernst, H. Spindler, and T. Kannengiesser, Hydrogen-Assisted Cracking of GMA Welded 960 MPa Grade High-Strength Steels, Int. J. Hydrogen Energy, 2020, 45(38), p 20080–20093. https://doi.org/10.1016/j.ijhydene.2020.05.077

    Article  CAS  Google Scholar 

  4. J. Tomków, D. Fydrych, and G. Rogalski, Dissimilar Underwater Wet Welding of HSLA Steels, Int. J. Adv. Manuf. Technol., 2020, 109(3–4), p 717–725

    Article  Google Scholar 

  5. L. Kumar, K.U. Yazar, and S. Pramanik, Effect of Fusion and Friction Stir Welding Techniques on the Microstructure, Crystallographic Texture and Mechanical Properties of Mild Steel, Mater. Sci. Eng. A, 2018, 2019(754), p 400–410. https://doi.org/10.1016/j.msea.2019.03.100

    Article  CAS  Google Scholar 

  6. D. Fairchild, A. Kumar, S. Ford, N. Nissley, R. Ayer, H. Jin, and A. Ozekcin, Research Concerning the Friction Stir Welding of Linepipe Steels, ASM Proc. Int. Conf. Trends Weld. Res. (2009), pp. 371–380

  7. A. Świerczyńska and M. Landowski, Plasticity of Bead-on-Plate Welds Made with the Use of Stored Flux-Cored Wires for Offshore Applications, Materials (Basel), 2020, 13(17), p 3888

    Article  Google Scholar 

  8. L.W. Wang, Z.Y. Liu, Z.Y. Cui, C.W. Du, X.H. Wang, and X.G. Li, In Situ Corrosion Characterization of Simulated Weld Heat Affected Zone on Api X80 Pipeline Steel, Corros. Sci., 2014, 85, p 401–410

    Article  CAS  Google Scholar 

  9. K.-M. Moon, M.-H. Lee, K.-J. Kim, and S.-J. Kim, The Effect of Post-Weld Heat Treatment Affecting Corrosion Resistance and Hydrogen Embrittlement of HAZ Part in FCAW, Surf. Coatings Technol., 2003, 169–170, p 675–678

    Article  Google Scholar 

  10. T. Hemmingsen, H. Hovdan, P. Sanni, and N.O. Aagotnes, The Influence of Electrolyte Reduction Potential on Weld Corrosion, Electrochim. Acta, 2002, 47(24), p 3949–3955

    Article  CAS  Google Scholar 

  11. G.A. Zhang and Y.F. Cheng, Micro-Electrochemical Characterization of Corrosion of Welded X70 Pipeline Steel in near-Neutral PH Solution, Corros. Sci., 2009, 51(8), p 1714–1724. https://doi.org/10.1016/j.corsci.2009.04.030

    Article  CAS  Google Scholar 

  12. J. Luo, S. Luo, L. Li, L. Zhang, G. Wu, and L. Zhu, Stress Corrosion Cracking Behavior of X90 Pipeline Steel and Its Weld Joint at Different Applied Potentials in Near-Neutral Solutions, Nat. Gas Ind. B, 2019, 6(2), p 138–144. https://doi.org/10.1016/j.ngib.2018.08.002

    Article  Google Scholar 

  13. J.W. Sowards, T. Gnäupel-herold, J.D. Mccolskey, V.F. Pereira, and A.J. Ramirez, Characterization of Mechanical Properties, Fatigue-Crack Propagation, and Residual Stresses in a Microalloyed Pipeline-Steel Friction-Stir Weld, Mater. Des., 2015, 88, p 632–642. https://doi.org/10.1016/j.matdes.2015.09.049

    Article  CAS  Google Scholar 

  14. D.P. Fairchild, A.J. Wasson, A. Kumar, M.L. Macia, and T.D. Anderson, Fractographic Investigation of Cleavage Initiation in Steel Friction Stir Welds, in Trends in Welding Research, 9th International Conference (2012), pp. 193–200

  15. Z.Y. Liu, X.G. Li, C.W. Du, L. Lu, Y.R. Zhang, and Y.F. Cheng, Effect of Inclusions on Initiation of Stress Corrosion Cracks in X70 Pipeline Steel in an Acidic Soil Environment, Corros. Sci., 2009, 51(4), p 895–900. https://doi.org/10.1016/j.corsci.2009.01.007

    Article  CAS  Google Scholar 

  16. H. Zhang, D. Wang, P. Xue, L.H. Wu, D.R. Ni, and Z.Y. Ma, Microstructural Evolution and Pitting Corrosion Behavior of Friction Stir Welded Joint of High Nitrogen Stainless Steel, Mater. Des., 2016, 110, p 802–810. https://doi.org/10.1016/j.matdes.2016.08.048

    Article  CAS  Google Scholar 

  17. G. Khalaj and M.J. Khalaj, Investigating the Corrosion of the Heat-Affected Zones (HAZs) of API-X70 Pipeline Steels in Aerated Carbonate Solution by Electrochemical Methods, Int. J. Press. Vessel. Pip., 2016, 145, p 1–12

    Article  CAS  Google Scholar 

  18. S. Bordbar, M. Alizadeh, and S.H. Hashemi, Effects of Microstructure Alteration on Corrosion Behavior of Welded Joint in API, X70 Pipeline Steel, Mater. Des., 2013, 45, p 597–604. https://doi.org/10.1016/j.matdes.2012.09.051

    Article  CAS  Google Scholar 

  19. J.A. Avila, E. Lucon, J.W. Sowards, P.R. Mei, and A.J. Ramirez, Assessment of Ductile-to-Brittle Transition Behavior of Localized Microstructural Regions in a Friction-Stir Welded X80 Pipeline Steel with Miniaturized Charpy V-Notch Testing, Metall. Mater. Trans. A, 2016, 47(6), p 2855–2865

    Article  CAS  Google Scholar 

  20. J. Avila, J. Rodriguez, P. Roberto, and A.J. Ramirez, Microstructure and Fracture Toughness of Multipass Friction Stir Welded Joints of API-5L-X80 Steel Plates, Mater. Sci. Eng. A, 2016, 673, p 257–265. https://doi.org/10.1016/j.msea.2016.07.045

    Article  CAS  Google Scholar 

  21. W. Wang, R. Xu, Y. Hao, Q. Wang, L. Yu, Q. Che, J. Cai, K. Wang, and Z. Ma, Corrosion Fatigue Behavior of Friction Stir Processed Interstitial Free Steel, J. Mater. Sci. Technol., 2018, 34(1), p 148–156. https://doi.org/10.1016/j.jmst.2017.11.013

    Article  Google Scholar 

  22. D.M. Sekban, S.M. Aktarer, and G. Purcek, Friction Stir Welding of Low-Carbon Shipbuilding Steel Plates: Microstructure, Mechanical Properties, and Corrosion Behavior, Metall. Mater. Trans. A, 2019, 50(9), p 4127–4140. https://doi.org/10.1007/s11661-019-05324-8

    Article  CAS  Google Scholar 

  23. T.F.C. Hermenegildo, T.F.A. Santos, E.A. Torres, C.R.M. Afonso, and A.J. Ramirez, Microstructural Evolution of HSLA ISO 3183 X80M (API, 5L X80) Friction Stir Welded Joints, Met. Mater. Int., 2018, 24(5), p 1120–1132

    Article  CAS  Google Scholar 

  24. J.A. Ávila, C.O.F.T. Ruchert, P.R. Mei, R.R. Marinho, M.T.P. Paes, and A.J. Ramirez, Fracture Toughness Assessment at Different Temperatures and Regions within a Friction Stirred API, 5L X80 Steel Welded Plates, Eng. Fract. Mech., 2015, 147, p 176–186

    Article  Google Scholar 

  25. J.A. Avila, R.A.R. Giorjao, J. Rodriguez, E.B. Fonseca, and A.J. Ramirez, Modeling of Thermal Cycles and Microstructural Analysis of Pipeline Steels Processed by Friction Stir Processing, Int. J. Adv. Manuf. Technol., 2018, 98(9–12), p 2611–2618

    Article  Google Scholar 

  26. L. Pan, C.T. Kwok, and K.H. Lo, Enhancement in Hardness and Corrosion Resistance of AISI, 420 Martensitic Stainless Steel via Friction Stir Processing, Surf. Coatings Technol., 2018, 2019(357), p 339–347

    Google Scholar 

  27. G.K. Padhy, C.S. Wu, and S. Gao, Friction Stir Based Welding and Processing Technologies - Processes, Parameters, Microstructures and Applications: A Review, J. Mater. Sci. Technol., 2018, 34(1), p 1–38

    Article  Google Scholar 

  28. American Society for Testing and Materials, ASTM E45-05 Standard Test Methods for Determining the Inclusion Content of Steel (2007), p. 19

  29. ASTM E3, E3-11 Standard Guide for Preparation of Metallographic Specimens 1, ASTM B. Stand. (2011), i(Reapproved), pp. 1–12

  30. ASTM E384, Standard Test Method for Microindentation Hardness of Materials, ASTM International (2017)

  31. J. Avila, J. Escobar, B. Cunha, W. Magalhães, P. Mei, J. Rodriguez, H. Pinto, and A. Ramirez, Physical Simulation as a Tool to Understand Friction Stir Processed X80 Pipeline Steel Plate Complex Microstructures, J. Mater. Res. Technol., 2018, https://doi.org/10.1016/j.jmrt.2018.09.009

    Article  Google Scholar 

  32. S. Zajac, V. Schwinn, and K.H. Tacke, Characterisation and Quantification of Complex Bainitic Microstructures in High and Ultra-High Strength Linepipe Steels, Mater. Sci. Forum, 2009, 500–501, p 387–394

    Google Scholar 

  33. G.A. Faria, Exploring Metallic Materials Behavior through in Situ Crystallographic Studies by Synchrotron Radiation, University of Campinas (2014)

  34. H. Tristijanto, M.N. Ilman, and P. Tri Iswanto, Corrosion Inhibition of Welded of X – 52 Steel Pipelines by Sodium Molybdate in 35% NaCl Solution, Egypt. J. Pet., 2020, https://doi.org/10.1016/j.ejpe.2020.02.001

    Article  Google Scholar 

  35. E.E.E. Stansbury and R.A.A. Buchanan, Fundamentals of Electrochemical Corrosion, ASM International (2000)

  36. T.F.A. Santos, T.F.C. Hermenegildo, C.R.M. Afonso, R.R. Marinho, M.T.P. Paes, and A.J. Ramirez, Fracture Toughness of ISO 3183 X80M (API, 5L X80) Steel Friction Stir Welds, Eng. Fract. Mech., 2010, 77(15), p 2937–2945. https://doi.org/10.1016/j.engfracmech.2010.07.022

    Article  Google Scholar 

  37. J.A. Avila, F.F. Conde, H.C. Pinto, J. Rodriguez, and F.A.F. Grijalba, Microstructural and Residuals Stress Analysis of Friction Stir Welding of X80 Pipeline Steel Plates Using Magnetic Barkhausen Noise, J. Nondestruct. Eval., 2019, 38(4), p 1–9. https://doi.org/10.1007/s10921-019-0625-2

    Article  Google Scholar 

  38. T.N. Baker, S. Rahimi, B. Wei, K. He, and N.A. Mcpherson, Evolution of Microstructure During Double-Sided Friction Stir Welding of Microalloyed Steel (2019)

  39. Y. Wang, G. Cheng, W. Wu, and Y. Li, Role of Inclusions in the Pitting Initiation of Pipeline Steel and the Effect of Electron Irradiation in SEM, Corros. Sci., 2017, 2018(130), p 252–260. https://doi.org/10.1016/j.corsci.2017.10.029

    Article  CAS  Google Scholar 

  40. T.Y. Jin and Y.F. Cheng, In Situ Characterization by Localized Electrochemical Impedance Spectroscopy of the Electrochemical Activity of Microscopic Inclusions in an X100 Steel, Corros. Sci., 2011, 53(2), p 850–853. https://doi.org/10.1016/j.corsci.2010.11.026

    Article  CAS  Google Scholar 

  41. J.M. Quispe-Avilés, D. Hincapie-Ladino, N.A. Falleiros, and H.G. de Melo, A Comparative Investigation of the Corrosion Resistance and HIC Suceptibility of API, 5L X65 and API, 5L X80 Steels, Mater. Res., 2019, 22(1), p 1–13

    Article  Google Scholar 

  42. L. Sharma and R. Chhibber, Microstructure Evolution and Electrochemical Corrosion Behaviour of API, X70 Linepipe Steel in Different Environments, Int. J. Press. Vessel. Pip., 2019, 171(January), p 51–59. https://doi.org/10.1016/j.ijpvp.2019.01.013

    Article  CAS  Google Scholar 

  43. M. Alizadeh and S. Bordbar, The Influence of Microstructure on the Protective Properties of the Corrosion Product Layer Generated on the Welded API, X70 Steel in Chloride Solution, Corros. Sci., 2013, 70, p 170–179. https://doi.org/10.1016/j.corsci.2013.01.026

    Article  CAS  Google Scholar 

  44. C.W. Du, X.G. Li, P. Liang, Z.Y. Liu, G.F. Jia, and Y.F. Cheng, Effects of Microstructure on Corrosion of X70 Pipe Steel in an Alkaline Soil (2009) 18(March), pp. 216–220

  45. N. Ochoa, C. Vega, N. Pébère, J. Lacaze, and J.L. Brito, CO2 Corrosion Resistance of Carbon Steel in Relation with Microstructure Changes, Mater. Chem. Phys., 2015, 156, p 198–205

    Article  CAS  Google Scholar 

  46. J.R. da Cruz and R. Bertazzoli, Characterization of Corrosion Within Friction Stir Weld Zones of an API, X-70 Steel Using a Novel Microcell Setup, J. Mater. Eng. Perform., 2020, 29(1), p 98–108. https://doi.org/10.1007/s11665-019-04531-z

    Article  CAS  Google Scholar 

  47. A. Di Schino and J.M. Kenny, Effects of the Grain Size on the Corrosion Behavior of Refined AISI, 304 Austenitic Stainless Steels, J. Mater. Sci. Lett., 2002, 21(20), p 1631–1634

    Article  Google Scholar 

  48. K.M. Deen, R. Ahmad, I.H. Khan, and Z. Farahat, Microstructural Study and Electrochemical Behavior of Low Alloy Steel Weldment, Mater. Des., 2010, 31(6), p 3051–3055. https://doi.org/10.1016/j.matdes.2010.01.025

    Article  CAS  Google Scholar 

  49. W. Liu, H. Pan, L. Li, H. Lv, Z. Wu, F. Cao, and J. Zhu, Corrosion Behavior of the High Strength Low Alloy Steel Joined by Vertical Electro-Gas Welding and Submerged Arc Welding Methods, J. Manuf. Process., 2017, 25, p 418–425. https://doi.org/10.1016/j.jmapro.2016.12.011

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of São Paulo for the use of their facilities, specifically to the Materials Engineering Department at the São Carlos School of Engineering (SMM, EESC-USP) and Electrochemical Process Laboratory at the Polytechnic School of Engineering (LPE, PMT-USP). The Brazilian Nanotechnology National Laboratory, LNNano-CNPEM/MCTIC, and the Instituto de Materiais Tecnológicos do Brasil Ltda, MIB, for materials and experimental support during the development of this work. One of the authors, Joseane Giarola, acknowledge the National Council for Scientific and Technological Development, CNPq, "Scholarship—Brazil." Process: 165065/2017-6. The authors also acknowledge Dr. Julián Escobar for the X-ray diffraction data treatment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Avila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giarola, J.M., Calderón-Hernández, J.W., Conde, F.F. et al. Corrosion Behavior and Microstructural Characterization of Friction Stir Welded API X70 Steel. J. of Materi Eng and Perform 30, 5953–5961 (2021). https://doi.org/10.1007/s11665-021-05640-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05640-4

Keywords

Navigation