Skip to main content
Log in

Coupling Effect of Grain Structures and Residual Secondary Phases on Fatigue Crack Propagation Behavior in an Al-Cu-Mg Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of solution treatments at high temperatures on the microstructure and fatigue performance of an Al-Cu-Mg alloy was investigated. Microstructural observation revealed that large secondary phases could be dissolved sufficiently by a strengthening solution at 507 °C for 20 min and shortening the solution time at the high temperature would bring about a significantly grain refinement. The fatigue test showed that the sample treated by the solution at the high temperature for a short time (507 °C/6 min) possessed the lowest fatigue crack propagation (FCP) rates. This was mainly attributed to the combined effect of the reduced large residual secondary phases and the conspicuous grain refinement. Reducing the large secondary phases remaining by the high temperature solution treatment was beneficial to limit the bridging of cracks, and refining the grains with Goss orientation could induce more crack deflection, consequently enhancing the fatigue resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.C. Williams and E.A. Starke, Progress in Structural Materials for Aerospace Systems, Acta Mater., 2003, 51, p 5775–5799.

    Article  CAS  Google Scholar 

  2. G.H. Bray, M. Glazov, R.J. Rioja, D. Li, and R.P. Gangloff, Effect of Artificial Aging on the Fatigue Crack Propagation Resistance of 2000 Series Aluminum Alloys, Int. J. Fatigue, 2001, 23, p 265–276.

    Article  Google Scholar 

  3. N. Kamp, N. Gao, M.J. Starink, and I. Sinclair, Influence of Grain Structure and Slip Planarity on Fatigue Crack Growth in Low Alloying Artificially Aged 2xxx Aluminium Alloys, Int. J. Fatigue, 2007, 29, p 869–878.

    Article  CAS  Google Scholar 

  4. M.J. Starink and S.C. Wang, The Thermodynamics of and Strengthening Due to Co-clusters: General Theory and Application to the Case of Al–Cu–Mg Alloys, Acta Mater., 2009, 57(8), p 2376–2389.

    Article  CAS  Google Scholar 

  5. F. Sarioğlu and F.Ö. Orhaner, Effect of Prolonged Heating at 130 °C on Fatigue Crack Propagation of 2024 Al Alloy in Three Orientations, Mater. Sci. Eng. A, 1998, 248(1), p 115–119.

    Article  Google Scholar 

  6. M. Liu, Z.Y. Liu, S. Bai, P. Xia, P.Y. Y, and S. Zeng, Solute Cluster Size Effect on the Fatigue Crack Propagation Resistance of an Underaged Al–Cu–Mg Alloy, Int. J. Fatigue, 2016, 84, p 104–112.

  7. F.D. Li, Z.Y. Liu, W.T. Wu, P. Xia, P.Y. Y, Y.R. Zhou, W.J. Liu, L.Q. Lu, and A. Wang, Enhanced Fatigue Crack Propagation Resistance of Al-Cu-Mg Alloy by Intensifying Goss Texture and Refining Goss Grains, Mater. Sci. Eng. A, 2017, 679, p 204–214.

  8. L. Venning, S.C. Hogg, I. Sinclair, and P.A.S. Reed, Fatigue Crack Growth and Closure in Fine-Grained Aluminium Alloys, Mater. Sci. Eng. A, 2006, 428, p 247–255.

    Article  Google Scholar 

  9. D.Y. Yin, H.Q. Liu, Y.Q. Chen, D.Q. Yi, B. Wang, B. Wang, F.H Shen, S. Fu, C. Tang, and S.P. Pan, Effect of Grain Size on Fatigue-Crack Growth in 2524 Aluminium Alloy, Int. J. Fatigue, 2016, 84, p 9–16.

  10. S. Bai, Z.Y. Liu, Y.T. Li, Y.H. Hou, and X. Chen, Microstructures and Fatigue Fracture Behavior of an Al–Cu–Mg–Ag Alloy with Addition of Rare Earth Er, Mater. Sci. Eng. A, 2010, 527(7–8), p 1806–1814.

    Article  Google Scholar 

  11. Z.Y. Liu, F.D. Li, P. Xia, S. Bai, Y.X. Gu, D.E Yu, and S.M. Zeng, Mechanisms for Goss-Grains Induced Crack Deflection and Enhanced Fatigue Crack Propagation Resistance in Fatigue Stage II of an AA2524 Alloy, Mater. Sci. Eng. A, 2015, 625, p 271–277.

  12. T. Zhai, A.J. Wilkinson and J.W. Martin, A Crystallographic Mechanism for Fatigue Crack Propagation through Grain Boundaries, Acta Mater., 2000, 48, p 4917–4927.

    Article  CAS  Google Scholar 

  13. T. Zhai, X. Jiang, J. Li, M.D. Garratt, and G.H. Bray, The Grain Boundary Geometry for Optimum Resistance to Growth of Short Fatigue Cracks in High Strength Al-Alloys, Int. J. Fatigue, 2005, 27, p 1202–1209.

    Article  CAS  Google Scholar 

  14. F.D. Li, Z.Y. Liu, W.T. Wu. Xia, P.Y. Ying, Q. Zhao, J.L. Li, S. Bai, and C.W. Ye, On the Role of Texture in Governing Fatigue Crack Propagation Behavior of 2524 Aluminum Alloy, Mater. Sci. Eng. A, 2016, 669, p 367–378.

  15. F.H. Shen, D.Q. Yi, Y. Jiang, B. Wang, H.Q. Liu, C. Tang, and W.B. Shou, Semi-quantitative Evaluation of Texture Components and Fatigue Properties in 2524 T3 Aluminum Alloy Sheets, Mater. Sci. Eng. A, 2016, 657, p 15–25.

    Article  CAS  Google Scholar 

  16. P. Xia, Z.Y. Liu, W.T. Wu, Q. Zhao, P.Y. Ying, and S. Bai, Texture Effect on Fatigue Crack Propagation Behavior in Annealed Sheets of an Al-Cu-Mg Alloy, J. Mater. Eng. Perform., 2018, 27(9), p 4693–4702.

    Article  CAS  Google Scholar 

  17. W.T. Wu, Z.Y. Liu, Y.C Hu, F.D. Li, S. Bai, P. Xia, A. Wang, and C.W. Ye, Goss texture intensity effect on fatigue crack propagation resistance in an Al-Cu-Mg alloy, J. Alloys Compd., 2018, 730, p 318–326.

  18. Y.C. Hu, Z.Y. Liu., Q. Zhao, S. Bai, and F. Liu, P-Texture Effect on the Fatigue Crack Propagation Resistance in an Al-Cu-Mg Alloy Bearing a Small Amount of Silver, Materials, 2018, 11(12), p 2481–2498.

  19. Y.Q. Chen, D.Q. Yi, Y. Jiang, B. Wang, D. Z. Xu, and S.C. Li, Twinning and Orientation Relationships of T-phase Precipitates in an Al Matrix, J. Mater. Sci., 2013, 48, p 3225–3231.

    Article  CAS  Google Scholar 

  20. Z.Q. Zheng, B. Cai, T. Zhai, and S.C. Li, The Behavior of Fatigue Crack Initiation and Propagation in AA2524-T34 Alloy, Mater. Sci. Eng. A, 2011, 528, p 2017–2022.

    Article  Google Scholar 

  21. L. Yan and J.K. Fan, In-situ SEM Study of Fatigue Crack Initiation and Propagation Behavior in 2524 Aluminum Alloy, Mater. Des., 2016, 110, p 592–601.

    Article  CAS  Google Scholar 

  22. V.K. Gupta and S.R. Agnew, Fatigue Crack Surface Crystallography Near Crack Initiating Particle Clusters in Precipitation Hardened Legacy and Modern Al-Zn-Mg-Cu Alloys, Int. J. Fatigue, 2011, 33, p 1159–1174.

    Article  CAS  Google Scholar 

  23. S. Bai, Z.Y. Liu, Y.X. Gu, X.W. Zhou, and S.M. Zeng, Microstructures and Fatigue Fracture Behavior of an Al-Cu-Mg-Ag Alloy with a Low Cu/Mg Ratio, Mater. Sci. Eng. A, 2011, 530, p 473–480.

    Article  CAS  Google Scholar 

  24. S.C. Wang and M.J. Starink, Precipitates and Intermetallic Phases in Precipitation Hardening Al-Cu-Mg-(Li) Based Alloys, Int. Mater. Rev., 2005, 50, p 193–215.

    Article  Google Scholar 

  25. Z. Cvijović, M. Rakin, M. Vratnica, and I. Cvijović, Microstructural dependence of fracture toughness in high-strength 7000 forging alloys, Eng. Fract. Mech., 2008, 75(8), p 2115–2129.

    Article  Google Scholar 

  26. J.Y. Chen, H. Yina, and Q.P. Sun, Effects of Grain Size on Fatigue Crack Growth Behaviors of Nanocrystalline Superelastic NiTi Shape Memory Alloys, Acta Mater., 2020, 195, p 141–150.

    Article  CAS  Google Scholar 

  27. J. Rackwitz, Q. Yua, and Y. Yang, Effects of Cryogenic Temperature and Grain Size on Fatigue-Crack Propagation in the Medium-Entropy CrCoNi Alloy, Acta Mater., 2020, 200, p 351–365.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the National Key Research and development Program of China (Grant No. 2016YFB0300900), the National Key Fundamental Research Project of China (Grant No. 2012CB619506-3), the National Natural Science Foundation of China (Grant No. 52001073) and the GDAS’ Project of Science and Technology Development (Grant No. 2020GDASYL-20200103138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyi Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, P., Liu, Z. & Bai, S. Coupling Effect of Grain Structures and Residual Secondary Phases on Fatigue Crack Propagation Behavior in an Al-Cu-Mg Alloy. J. of Materi Eng and Perform 30, 2669–2679 (2021). https://doi.org/10.1007/s11665-021-05626-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05626-2

Keywords

Navigation