Skip to main content

Advertisement

Log in

Insight into the Mechanical Properties and Fracture Behavior of Pt3Al Coating by Experiment and Theoretical Simulation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The polycrystalline Pt3Al coating was prepared by the arc-melting method. The fracture mechanism of Pt3Al was investigated by the theoretical investigation. The interactomic potential of Pt3Al was built by the first-principles method. The measured fracture strength of Pt3Al is 449.5 MPa. The SEM image indicates that Pt3Al shows the lamellar cleavage fracture due to the large number of slips. The MD simulation indicates that this coating exhibits intermediate brittle fracture, which is close to the experiment. The cleavage fracture of Pt3Al is attributed to the atomic cluster. The development of microcracks on slip shear band is determinate by the thermal activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. P. Maji, R. Mitra and K.K. Ray, Effect of Cr on the Evolution of Microstructures in As-Cast Ternary Niobium-Silicide-Based Composites, Intermetallics, 2017, 85, p 34.

    CAS  Google Scholar 

  2. Y. Pan, Y. Lin, G. Liu and J. Zhang, Influence of Transition Metal on the Mechanical and Thermodynamic Properties of IrAl Thermal Barrier Coating, Vacuum, 2020, 174, p 109203.

    CAS  Google Scholar 

  3. X. Hu, Z. Xue, G. Zhao, J. Yun, D. Shi and X. Yang, Laser Welding of a Selective Laser Melted Ni-Base Superalloy: Microstructure and High Temperature Mechanical Property, Mater. Sci. Eng. A, 2019, 745, p 335.

    CAS  Google Scholar 

  4. Y. Pan and W.M. Guan, The Hydrogenation Mechanism of PtAl and IrAl Thermal Barrier Coatings From First-Principles Investigations, Int. J. Hydrog. Energy, 2020, 45, p 20032.

    CAS  Google Scholar 

  5. D. Canadinc, W. Trehern, J. Ma, I. Karaman, F. Sun and Z. Chaudhry, Ultra-High Temperature Multi-component Shape Memory Alloys, Scr. Mater., 2019, 158, p 83.

    CAS  Google Scholar 

  6. Y. Pan, D.L. Pu, Y.Q. Li and Q.H. Zheng, Origin of the Antioxidation Mechanism of RuAl(1 1 0) Surface from Firstprinciples Calculations, Mater. Sci. Eng. B, 2020, 259, p 114580.

    CAS  Google Scholar 

  7. J.P. Oliverira, N. Schell, N. Zhou, L. Wood and O. Benafan, Laser Welding of Precipitation Strengthened Ni-rich NiTiHf High Temperature Shape Memory Alloys: Microstructure and Mechanical Properties, Mater. Des., 2019, 162, p 229.

    Google Scholar 

  8. Y. Pan, The Structural Stability and Optical Properties of NiPt Nanomaterial from First-Principles Investigations, Mater. Sci. Semicond. Proc., 2020, 120, p 105306.

    CAS  Google Scholar 

  9. K. Sato, H. Yasuda, S. Ichikawa, M. Imamura, K. Tahahashi, S. Hata, S. Matsumura, S. Anada, J.G. Lee and H. Mori, Synthesis of Platinum Silicide at Platinum/Silicon Oxide Interface by Photon Irradiation, Acta Mater, 2018, 154, p 284.

    CAS  Google Scholar 

  10. Y. Pan, The Structural, Mechanical and Thermodynamic Properties of the Orthorhombic TMAl (TM=Ti, Y, Zr and Hf) Aluminides from First-Principles Calculations, Vacuum, 2020, 181, p 109742.

    CAS  Google Scholar 

  11. Y.F. Yang, C.Y. Jiang, H.R. Yao, Z.B. Bao, S.L. Zhu and F.H. Wang, Cyclic Oxidation and Rumpling Behaviour of Single Phase β-(Ni, Pt)Al Coatings with Different Thickness of Initial Pt Plating, Corros. Sci., 2016, 111, p 162.

    CAS  Google Scholar 

  12. X.J. Jiang, Y.Y. Zhang, C.L. Li, G.D. Liang, R.H. Han and X.Y. Zhang, Microstructure and Mechanical Properties of ZrAl Binary Alloys, J. Alloy Compd., 2019, 811, p 152068.

    CAS  Google Scholar 

  13. Y. Pan and D. Pu, The Structural, Mechanical, and Thermodynamic Properties of B2-type TMZr (TM=Ru, Mo, Rh, Os, and Re) Compounds from First-Principles Calculations, Int. J. Quantum Chem., 2019, 119, p e26015.

    CAS  Google Scholar 

  14. D.J. Frankel, S.C. Moulzolf, M.P. da Cunha and R.J. Lad, Influence of Composition and Multilayer Architecture on Electricalconductivity of High Temperature Pt-Alloy Films, Surf. Coat. Technol., 2015, 284, p 215.

    CAS  Google Scholar 

  15. Y. Pan, Experimental and Theoretical Investigation of Origin of Mechanical Properties and Fracture Mechanism of Pt3Zr High-Temperature Material, JOM, 2020, 72, p 2419.

    CAS  Google Scholar 

  16. N. Liu, X. Wang and Y. Wan, First Principles Calculations of Structural, Elastic, Electronic Properties of Ir3Zr with L12 Structure Under High Pressure, Mater. Chem. Phys., 2015, 162, p 807.

    CAS  Google Scholar 

  17. L.A. Zhu, G. Du, S. Bai, H. Zhang and Y. Ye, YuanlinAi, Oxidation Behavior of a Double-Layer Iridium-Aluminum Intermetallic Coating on Iridium at the Temperature of 1400 °C-2000 °C in the Air Atmosphere, Corros. Sci., 2017, 123, p 328.

    CAS  Google Scholar 

  18. Y. Pan, J. Zhang and J. Luo, Role of Ru Concentration on Structure, Mechanical and Thermodynamic Properties of Ru-Al Compounds, Mater. Des., 2017, 118, p 146.

    CAS  Google Scholar 

  19. Y. Pan and W.M. Guan, Investigation of Improvement of Electronic Properties and Ductility of RuAl2 Semiconducting Material by Boron Doping Using First-Principles Calculations, JOM, 2019, 71, p 1611.

    CAS  Google Scholar 

  20. P.V. Zakharov, E.A. Korznikova, S.V. Dmitriev, E.G. Ekomasov and K. Zhou, Surface Discrete Breathers in Pt3Al Intermetallic Alloy, Surf Sci, 2019, 679, p 1.

    CAS  Google Scholar 

  21. Y. Pan, C. Jin and P. Mao, Role of Vacancies on Electronic and Elastic Properties of RuAl2 Semiconducting Compound from First-Principles Calculations, J. Electron. Mater., 2017, 46, p 6639.

    CAS  Google Scholar 

  22. M.Z. Alam, S.V. Kamat, V. Jayaram, P.S. Karamched, P. Ghosal and D.K. Das, Dynamic Recovery and Recrystallization During High-Temperature Tensile Deformation of a Free-Standing Pt-Aluminide Bond Coat, Mater. Sci. Eng. A, 2014, 604, p 18.

    CAS  Google Scholar 

  23. Y. Pan and C.-S. Shi, Influence of Alloying Elements on the Mechanical Properties of PtAl2 from First-Principles Calculations, JOM, 2018, 70, p 2463.

    CAS  Google Scholar 

  24. B. Grushko, D. Kapush, J. Su and W. Wan, Al-Rich Region of Al-Pt, J. Alloy Compd., 2013, 580, p 618.

    CAS  Google Scholar 

  25. C. Huang, Y.Y. Mitarai and H. Harada, The Stabilization of Pt3Al Phase with L12 Structure in Pt-Al -Ir-Nb and Pt-Al-Nb Alloys, J. Alloy Compd., 2004, 366, p 217.

    CAS  Google Scholar 

  26. Y. Pan, S. Wang and C. Zhang, Ab-initio Investigation of Structure and Mechanical Properties of PtAlTM Ternary Alloy, Vacuum, 2018, 151, p 205.

    CAS  Google Scholar 

  27. H.R. Chauke, B. Minisini, R. Drautz, D.N. Manh, P.E. Ngoepe and D.G. Pettifor, Theoretical Investigation of the Pt3Al Ground State, Intermetallics, 2010, 18, p 417.

    CAS  Google Scholar 

  28. S. Chen, Y. Pan, D. Wang and H. Deng, Structural Stability and Electronic and Optical Properties of Bulk WS2 from First-Principles Investigations, J Electron Mater, 2020, 49, p 7363.

    Google Scholar 

  29. Y. Pan, D.L. Pu and E.D. Yu, Structural, Electronic, Mechanical and Thermodynamic Properties of Cr-Si Binary Silicides from First-Principles Investigations, Vacuum, 2021, 185, p 110024.

    CAS  Google Scholar 

  30. F. Cheng, W. Gui and J. Lin, Slow-Growing Titanium Dioxide on Ti-48Al Porous Alloy Mediated by Nb and Cr Addition: Perspective via Local Metal-Oxygen Bonding Strength, J. Mater. Eng. Perform., 2020, 29, p 1558.

    CAS  Google Scholar 

  31. D.L. Pu and Y. Pan, Influence of High Pressure on the Structure, Hardness and Brittle-to-Ductile Transition of NbSi2 Ceramics, Ceram. Int., 2021, 47, p 2311.

    CAS  Google Scholar 

  32. Y. Pan, E. Yu, D. Wang and H. Deng, Sulfur Vacancy Enhances the Electronic and Optical Properties of FeS2 as the High Performance Electrode Material, J. Alloy Compd., 2021, 858, p 157662.

    CAS  Google Scholar 

  33. C.H. Liebscher and U. Glatzel, Configuration of Superdislocations in the Pt3Al Phase of a Pt-Based Superalloy, Intermetallics, 2014, 48, p 71.

    CAS  Google Scholar 

  34. G.B. Fairbank, C.J. Humphreys, A. Kelly and C.N. Jones, Ultra-High Temperature Intermetallics for the Third Millennium, Intermetallics, 2000, 8, p 1091.

    CAS  Google Scholar 

  35. P.J. Hill, Y.Y. Mitarai and I.M. Wolff, High-Temperature Compression Strengths of Precipitation-Strengthened Ternary Pt-Al-X Alloys, Scr. Mater., 2001, 44, p 43.

    CAS  Google Scholar 

  36. M.Z. Alam, S.V. Kamat, V. Jayaram and D.K. Das, Micromechanisms of Fracture and Strengthening in Free-Standing Pt-Aluminide Bond Coats under Tensile Loading, Acta Mater., 2014, 67, p 278.

    CAS  Google Scholar 

  37. P. Lin, C.M. Chai, M. Xue, H. Xu and K. Zhou, An Approach for the Prediction of Interfacial Delamination of an a-Si3N4/Si Bilayer System, J. Phys. D Appl. Phys., 2016, 49, p 365301.

    Google Scholar 

  38. Y. Pan and W.M. Guan, Exploring the Structural Stability and Mechanical Properties of TM5SiB2 Ternary Silicides, Ceram. Int., 2018, 44, p 9893.

    CAS  Google Scholar 

  39. Y. Liu, X. Zhang, Z.B. Xiao and Y. Huang, Hydrogen Adsorption on L12-Al3X(X = Zr, Sc) Surface and Its Diffusion in the Bulk: A First-Principles Study, Vacuum, 2020, 182, p 109680.

    CAS  Google Scholar 

  40. Y. Pan, Influence of Oxygen Vacancies on the Electronic and Optical Properties of Zirconium Dioxide from First-Principles Calculations, J. Electron. Mater., 2019, 48, p 5154.

    CAS  Google Scholar 

  41. Y. Ma and S.H. Garofalini, Lattice Dynamics and Molecular-Dynamics Study of Quartz Using a Many-Body Variable Potential, Phys. Rev. B, 2006, 73, p 174109.

    Google Scholar 

  42. B.J. Lee, J.H. Shim and M.I. Baskes, Semiempirical Atomic Potentials for the fcc Metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb Based on First and Second Nearest-Neighbor Modified Embedded Atom Method, Phys. Rev. B, 2003, 68, p 144112.

    Google Scholar 

  43. Y. Pan, J. Wang, D. Wang and H. Deng, Influence of Vacancy on the Elastic Properties, Ductility and Electronic Properties of Hexagonal C40 MoSi2 from First-Principles Calculations, Vacuum, 2020, 179, p 109438.

    CAS  Google Scholar 

  44. M. Parrinello and A. Rahman, Crystal Structure and Pair Potentials: A Molecular-Dynamics Study, Phys. Rev. Lett., 1980, 45, p 1196.

    CAS  Google Scholar 

  45. F. Ebrahimi and S.S. Astava, Brittle-to-Ductile Transition in NiAl Single Crystal, Acta Mater., 1998, 46, p 1493.

    CAS  Google Scholar 

  46. W. Weibull, A Statistical Distribution Function of Wide Applicability, J. Appl. Mech., 1951, 13, p 293.

    Google Scholar 

  47. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark and M.C. Payne, First-Principles Simulation: Ideas, Illustrations and the CASTEP Code, J. Phys. Condens. Mater., 2002, 14, p 2717.

    CAS  Google Scholar 

  48. Y. Pan and E. Yu, First-Principles Investigation of Electronic and Optical Properties of H-Doped FeS2, Int. J. Energy Res., 2021 https://doi.org/10.1002/er.6510

    Article  Google Scholar 

  49. J.P. Perdew and Y. Wang, Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy, Phys. Rev. B, 1992, 45, p 13244.

    CAS  Google Scholar 

  50. D.M. Ceperley and B.J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett., 1980, 45, p 566.

    CAS  Google Scholar 

  51. Y. Pan and S. Chen, Exploring the Novel Structure, Transportable Capacity and Thermodynamic Properties of TiH2 Hydrogen Storage Material, Int. J. Energy Res., 2020, 44, p 4997.

    CAS  Google Scholar 

  52. L. Zhang, Y. Qiang and F. Yu, Halide Perovskite Nanotube Toward Energy Applications: A First-Principles Investigation, Int. J. Energy Res., 2020, 44, p 5412.

    CAS  Google Scholar 

  53. Y. Pan and J. Zhang, Influence of Noble Metals on the Electronic and Optical Properties of the Monoclinic ZrO2: A First-Principles Study, Vacuum, 2021, 187, p 110112.

    CAS  Google Scholar 

  54. L. Liu, F. Lu and J. Tian, Electronic Properties of Graded Ga1-xAlxN Superlattice Nanowires Photocathode: First-Principles, Int. J. Energy Res., 2020, 44, p 10768.

    CAS  Google Scholar 

  55. Y. Pan, S. Chen and Y. Jia, First-Principles Investigation of Phonon Dynamics and Electrochemical Performance of TiO2-x Oxides Lithium-Ion Batteries, Int. J. Hydrog. Energy, 2020, 45, p 6207.

    CAS  Google Scholar 

  56. Q.A. Zhang and E. Akiba, Phase Relations and Hybrogenation Behavior of Sr(Al1-x)Mgx)2, J. Alloy Compd., 2003, 360, p 143.

    CAS  Google Scholar 

  57. M.K. Khan, Compressive and Lamination Strength of Honeycomb Sandwich Panels with Strain Energy Calculation from ASTM Standards, Proc. Inst. Mech. Eng. G J. Aerosp. Eng., 2006, 220, p 375.

    Google Scholar 

  58. J. Luo, M. Li, H. Li and W. Yu, Effect of the Strain on the Deformation Behavior of Isothermally Compressed Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2009, 505, p 88.

    Google Scholar 

  59. S. Ifergane, Z. Barkay, O. Beeri and N. Eliaz, Study of Fracture Evolution in Copper Sheets by in situ Tensile Test and EBSD Analysis, J. Mater. Sci., 2010, 45, p 6345.

    CAS  Google Scholar 

  60. N.L. Okamoto, Y. Hasegawa and H. Inui, Plastic Deformation of Single Crystals of Pt3Al with the L12 Structure Having a Far Al-rich Off-Stoichiometric Composition of Pt-29at.%Al, Philos. Mag. A, 2014, 94, p 1327.

    CAS  Google Scholar 

  61. Y. Pan, D. Pu and G. Liu, Influence of Mo Concentration on the Structure, Mechanical and Thermodynamic Properties of Mo-Al Compounds from First-Principles Calculations, Vacuum, 2020, 175, p 109291.

    CAS  Google Scholar 

  62. D. Weiss, Improved High-Temperature Aluminum Alloys Containing Cerium, J. Mater. Eng. Perform., 2019, 28, p 1903.

    CAS  Google Scholar 

  63. Y. Pan, D. Pu, G. Liu and P. Wang, Influence of Alloying Elements on the Structural Stability, Elastic, Hardness and Thermodynamic Properties of Mo5SiB2 from First-Principles Calculations, Ceram. Int., 2020, 46, p 16605.

    CAS  Google Scholar 

  64. E. Sap, Microstructural and Mechanical Properties of Cu-Based Co-Mo-Reinforced Composites Produced by the Powder Metallurgy Method, J. Mater. Eng. Perform., 2020, 29, p 8461.

    CAS  Google Scholar 

  65. Y. Pan, Structural Prediction and Overall Performances of CrSi2 Disilicides: DFT Investigations, ACS Sustain. Chem. Eng., 2020, 8, p 11024.

    CAS  Google Scholar 

  66. A. Li, Q. Chen, G. Wu, X. Huang, Y. Wang, Z. Lu, G. Zhang and X. Nie, Effect of the Variation of Film Thickness on the Properties of Multilayered Si-Doped Diamond-Like Carbon Films Deposited on SUS 304, Al and Cu Substrates, J. Mater. Eng. Perform., 2020, 29, p 8473.

    CAS  Google Scholar 

  67. Y. Pan, D. Pu and Y. Jia, Adjusting the Correlation Between the Oxidation Resistance and Mechanical Properties of Pt-Based Thermal Barrier Coating, Vacuum, 2020, 172, p 109067.

    CAS  Google Scholar 

  68. R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. Sect. A, 1952, 65, p 349.

    Google Scholar 

  69. S.F. Pugh, Relations Between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals, Philos. Mag., 1954, 45, p 823.

    CAS  Google Scholar 

  70. R. Huch and W. Klemm, Das System Platin-Aluminium, Z. Anorg. Allg. Chem., 1964, 329, p 123.

    CAS  Google Scholar 

  71. Y.Y. Mitarai and H. Aoki, An Assessment of Ir-Pt-Al Alloys for High-Temperature Materials, J. Alloy Compd., 2003, 359, p 143.

    Google Scholar 

  72. Y. Pan, RuAl2: Structure, Electronic and Elastic Properties from First-Principles, Mater. Res. Bull., 2017, 93, p 56.

    CAS  Google Scholar 

  73. D. Connétable and O. Thomas, First-Principles Study of the Structural, Electronic, Vibrational, and Elastic Properties Of Orthorhombic NiSi, Phys. Rev. B, 2009, 79, p 094101.

    Google Scholar 

  74. Y. Pan and D. Pu, First-Principles Investigation of Oxidation Behavior of Mo5SiB2, Ceram. Int., 2020, 46, p 6698.

    CAS  Google Scholar 

  75. R. Huch and W. Klem, Das System Platin-Aluminium, Z. Metallkd., 1987, 78, p 485.

    Google Scholar 

  76. H.H. Stadelmaier and W.K. Hardy, Ternary Alloys of C-Pd and C-Pt with Mg, Al, Zn, Ga, Ge, Cd, In, Sn, Hg, TI and Pb. Z. Metallkd., 1961, 52, p 391.

    Google Scholar 

  77. Y. Pan and M. Wen, Ab-initio Calculations of Mechanical and Thermodynamic Properties of TM (Transition Metal: 3d and 4d)-Doped Pt3Al, Vacuum, 2018, 156, p 419.

    CAS  Google Scholar 

  78. D.E. Kim, V.R. Manga, S.N. Prins and Z.K. Liu, First-Principles Calculations and Thermodynamic Modeling of the Al-Pt Binary System, Calphad, 2011, 35, p 20.

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the State Key Laboratory of Advanced Technology for Comprehensive Utilization of Platinum Metals (Grant No. SKL-SPM-201816). We acknowledge the helpful from Lady Yun Zheng.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y. Insight into the Mechanical Properties and Fracture Behavior of Pt3Al Coating by Experiment and Theoretical Simulation. J. of Materi Eng and Perform 30, 2661–2668 (2021). https://doi.org/10.1007/s11665-021-05620-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05620-8

Keywords

Navigation