Skip to main content

Microstructural Features and Mechanical Integrity of Wire Arc Additive Manufactured SS321/Inconel 625 Functionally Gradient Material

Abstract

The additively fabricated functionally gradient structures can be a potential replacement for conventionally manufactured structures via fusion welding techniques. A SS321/Inconel 625 functionally gradient material was processed by wire arc additive manufacturing (WAAM) process. The WAAM-formed SS321 comprises of equiaxed and columnar structures, while the Inconel 625 consists of dendritic structures. It can be concluded that a very narrow interface was formed between the additively manufactured SS321/Inconel 625 FGM without forming cracks or fissures. Energy-dispersive x-ray spectroscopy (EDS) element maps show a smooth transition of elements at the interface without much segregation while EDS point scan confirmed the presence of laves phase. The electron backscatter diffraction results at the interface region revealed continuous crystallographic growth with large elongated grains in the <001> orientation. Tensile properties were better for SS321 and comparable for Inconel 625 than the wrought alloys, while the interface FGM sample failed on the SS321 side. The micro-hardness steadily changed from 226-195 HV and 272-236 HV in SS321 and Inconel 625, respectively. The WAAM process demonstrates that successful FGM components can be fabricated with multi-material and controlled properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. R. Duraisamy, S. Mohan Kumar, A. Rajesh Kannan, N. Siva Shanmugam, K. Sankaranarayanasamy and M.R. Ramesh, Tribological Performance of Wire arc additive Manufactured 347 Austenitic Stainless Steel Under Unlubricated Conditions at Elevated Temperatures, J. Manuf. Process., 2020, 56, p 306–321.

    Article  Google Scholar 

  2. A.V. Nemani, M. Ghaffari and A. Nasiri, Comparison of Microstructural Characteristics and Mechanical Properties of Shipbuilding Steel Plates Fabricated by Conventional Rolling Versus Wire Arc Additive Manufacturing, Addit. Manuf., 2020, 32, p 101086.

    Google Scholar 

  3. R. Pramod, S. MohanKumar, B. Girinath, A. RajeshKannan, N. PravinKumar and N. SivaShanmugam, Fabrication, Characterisation, and Finite Element Analysis of Cold Metal Transfer–Based Wire and Arc Additive-Manufactured Aluminium Alloy 4043 Cylinder, Weld. World, 2020, 64, p 1905–1919.

    CAS  Article  Google Scholar 

  4. M. Bambach, I. Sizova, B. Sydow, S. Hemes and F. Meinersc, Hybrid Manufacturing of Components from Ti-6Al-4V by Metal Forming and Wire-Arc Additive Manufacturing, J. Mater. Process. Technol., 2020, 283, p 116689.

    Article  CAS  Google Scholar 

  5. I.F. Ituarte, N. Boddeti, V. Hassani, M.L. Dunn and D.W. Rosen, Design and Additive Manufacture of Functionally Graded Structures Based on Digital Materials, Addit. Manuf., 2019, 30, p 100839.

    Google Scholar 

  6. B. Onuike and A. Bandyopadhyay, Bond Strength Measurement for Additively Manufactured Inconel 718-GRCop84 Copper Alloy Bimetallic Joints, Addit. Manuf., 2019, 27, p 576–585.

    CAS  Google Scholar 

  7. U. Reisgen, R. Sharma and L. Oster, Plasma Multiwire Technology with Alternating Wire Feed for Tailor-Made Material Properties in Wire and Arc Additive Manufacturing, Metals, 2019, 9, p 745.

    CAS  Article  Google Scholar 

  8. B.E. Carroll, R.A. Otis, J.P. Borgonia, J. Suh, R.P. Dillon, A.A. Shapiro, D.C. Hofmann, Z.-K. Liu and A.M. Beese, Functionally Graded Material of 304L Stainless Steel and Inconel 625 Fabricated by Directed Energy Deposition: Characterization and Thermodynamic Modeling, Acta Mater., 2016, 108, p 46–54.

    CAS  Article  Google Scholar 

  9. M. Sireesha, S.K. Albert, V. Shankar and S. Sundaresan, A Comparative Evaluation of Welding Consumables for Dissimilar Welds Between 316LN Austenitic Stainless Steel and Alloy 800, J. Nucl. Phys. Mater. Sci. Radiat. Appl., 2000, 279, p 65–76.

    CAS  Google Scholar 

  10. P. Varghese, E. Vetrivendan, M.K. Dash, S. Ningshen, M. Kamaraj and U. Kamachi Mudali, Weld Overlay Coating of Inconel 617 M on type 316 L stainless Steel by Cold Metal Transfer Process, Surf. Coat. Technol., 2019, 357, p 1004–1013.

    CAS  Article  Google Scholar 

  11. R.W. Hertzberg, R.P. Vinci and J.L. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 5th ed. Wiley, Hoboken, 2013.

    Google Scholar 

  12. D.E. Cooper, N. Blundell, S. Maggs and G.J. Gibbons, Additive layer Manufacture of Inconel 625 Metal Matrix Composites, Reinforcement Material Evaluation, J. Mater. Process. Technol., 2013, 213, p 2191–2200.

    CAS  Article  Google Scholar 

  13. V. Chaudhary, N.M.S. Kiran Kumar Yadav, S.A. Mantri, S. Dasari, A. Jagetia, R.V. Ramanujan and R. Banerjee, Additive Manufacturing of Functionally Graded Co-Fe and Ni-Fe Magnetic Materials, J. Alloys Compd., 2020, 823, p 153817.

    CAS  Article  Google Scholar 

  14. S. Chandrasekaran, S. Hari and M. Amirthalingam, Wire Arc Additive Manufacturing of Functionally Graded Material for Marine Risers, Mater. Sci. Eng. A., 2020, 792, p 139530.

    CAS  Article  Google Scholar 

  15. L.D. Bobbio, R.A. Otis, J.P. Borgonia, R.P. Dillon, A.A. Shapiro, Z.-K. Liu and A.M. Beese, Additive Manufacturing of a Functionally Graded Material From Ti-6Al-4V to Invar: Experimental Characterization and Thermodynamic Calculations, Acta Mater., 2017, 127, p 133–142.

    CAS  Article  Google Scholar 

  16. Bo. Chen, Su. Yi, Z. Xie, C. Tan and J. Feng, Development and characterization of 316L/Inconel625 functionally graded material fabricated by laser direct metal deposition, Opt. Laser Technol., 2020, 123, p 105916.

    CAS  Article  Google Scholar 

  17. C. Tan, K. Zhou and T. Kuang, Selective Laser Melting of Tungsten-Copper Functionally Graded Material, Mater. Lett., 2019, 237, p 328–331.

    CAS  Article  Google Scholar 

  18. C.F. Tey, X. Tan, S.L. Sing and W.Y. Yeong, Additive Manufacturing of Multiple Materials by Selective Laser Melting: Ti-Alloy to Stainless Steel Via a Cu-Alloy Interlayer, Addit. Manuf., 2020, 31, p 100970.

    CAS  Google Scholar 

  19. M.R.U. Ahsan, A.N.M. Tanvir, G.-J. Seo, B. Bates, W. Hawkins, C. Lee, P.K. Liaw, M. Noakes, A. Nycz and D.B. Kim, Heat-Treatment Effects on a Bimetallic Additively-Manufactured Structure (BAMS) of the Low-Carbon Steel and Austenitic-Stainless Steel, Addit. Manuf., 2020, 32, p 101036.

    CAS  Google Scholar 

  20. A. Rajesh Kannan, S. Mohan Kumar, R. Pramod, N. Pravin Kumar, N. Siva Shanmugam and Y. Palguna, Microstructure and Mechanical Properties of Wire Arc Additive Manufactured Bi-Metallic Structure, Sci. Technol. Weld. Joining, 2021, 26, p 47–57.

    CAS  Article  Google Scholar 

  21. G. Sayiram and N. Arivazhagan, Microstructural Characterization of Dissimilar Welds Between Incoloy 800H and 321 Austenitic Stainless Steel, Mater. Charact., 2015, 102, p 180–188.

    CAS  Article  Google Scholar 

  22. A.V. Gusarova and E.S. Khoroshko, Influence of electron beam parameters on the structure and properties of 321 steel obtained by additive manufacturing, AIP Conf. Proc., 2019, 2167, p 020133.

    Article  CAS  Google Scholar 

  23. A. Rajesh Kannan, N. Siva Shanmugam, V. Rajkumar and M. Vishnukumar, Insight Into the Microstructural Features and Corrosion Properties of Wire Arc Additive Manufactured Super Duplex Stainless Steel (ER2594), Mater. Lett., 2020, 270, p 127680.

    CAS  Article  Google Scholar 

  24. J. Liu and A.C. To, Quantitative Texture Prediction of Epitaxial Columnar Grains in Additive Manufacturing Using Selective Laser Melting, Addit. Manuf., 2017, 16, p 58–64.

    CAS  Google Scholar 

  25. D.R. Liu, S.H. Wang and W.T. Yan, Grain Structure Evolution in Transition-Mode Melting in Direct Energy Deposition, Mater. Des., 2020, 194, p 108919.

    Article  Google Scholar 

  26. F. Yan, W. Xiong and E. Faierson, Grain Structure Control of Additively Manufactured Metallic Materials, Materials, 2017, 10, p 1260.

    Article  CAS  Google Scholar 

  27. S. Kou, Welding Metallurgy, Wiley, Hoboken, 2003.

    Google Scholar 

  28. Y.F. Wang, X.Z. Chen and C.C. Su, Microstructure and Mechanical Properties of Inconel 625 Fabricated by Wire-Arc Additive Manufacturing, Surf. Coat. Technol., 2019, 374, p 116–123.

    CAS  Article  Google Scholar 

  29. M. Tümer, T. Mert and T. Karahan, Investigation of Microstructure, Mechanical, and Corrosion Behavior of Nickel-Based Alloy 625/Duplex Stainless Steel UNS S32205 Dissimilar Weldments Using ERNiCrMo-3 Filler Metal, Weld World, 2020 https://doi.org/10.1007/s40194-020-01011-0

    Article  Google Scholar 

  30. F. Hejripour and D.K. Aidun, Consumable Selection for Arc Welding Between Stainless Steel 410 and Inconel 718, J. Mater. Process. Technol., 2017, 245, p 287–299.

    CAS  Article  Google Scholar 

  31. M.R.U. Ahsan, X. Fan, G.-J. Seo, C. Ji, M. Noakes, A. Nycz, P.K. Liaw and D.B. Kim, Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel, J. Mater. Sci. Technol., 2021, 74, p 176–188.

    Article  Google Scholar 

  32. S. Shakerin, A. Hadadzadeh, B.S. Amirkhiz, S. Shamsdini, J. Li and M. Mohammadi, Additive manufacturing of maraging steel-H13 bimetals using laser powder bed fusion technique, Addit. Manuf., 2019, 29, p 100797.

    CAS  Google Scholar 

  33. X. Chen, J. Li, X. Cheng, H. Wang and Z. Huang, Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing, Mater. Sci. Eng. A., 2018, 715, p 307–314.

    CAS  Article  Google Scholar 

  34. S. Mohan Kumar, S. Sankarapandian and N. Siva Shanmugam, Investigations on mechanical properties and microstructural examination of activated TIG-welded nuclear grade stainless steel, J. Braz. Soc. Mech. Sci. Eng., 2020, 42, p 292.

    CAS  Article  Google Scholar 

  35. M. Khler, Effect of the Elevated-Temperature-Precipitation in Alloy 625 on Properties and Microstructure, Paper Presented at Superalloys 718, 625, 706 and Various Derivatives, TMS, Pittsburgh, PA, USA (1991), pp. 363–374

  36. M. Newell, K. Devendra, P.A. Jennings and N. D’Souza, Role of Dendrite Branching and Growth Kinetics in the Formation of Low Angle Boundaries in Ni–base Superalloys, Mater. Sci. Eng. A., 2005, 412, p 307–315.

    Article  CAS  Google Scholar 

  37. A. Rajesh Kannan, S. Mohan Kumar, N. Pravin Kumar, N. Siva Shanmugam, A.S. Vishnu and Y. Palguna, Process-Microstructural Features for Tailoring Fatigue Strength of Wire Arc Additive Manufactured Functionally Graded Material of SS904L and Hastelloy C-276, Mater. Lett., 2020, 274, p 127968.

    CAS  Article  Google Scholar 

  38. A. Hinojos, J. Mireles, A. Reichardt, P. Frigola, P. Hosemann, L.E. Murr and R.B. Wicker, Joining of Inconel 718 and 316 Stainless Steel Using Electron Beam Melting Additive Manufacturing Technology, Mater. Des., 2016, 94, p 17–27.

    CAS  Article  Google Scholar 

  39. C. Pleass and S. Jothi, Influence of Powder Characteristics and Additive Manufacturing Process Parameters on the Microstructure and Mechanical Behaviour of Inconel 625 Fabricated by Selective Laser Melting, Addit. Manuf., 2018, 24, p 419–431.

    CAS  Google Scholar 

  40. ASTM International, A240/A240M-20a Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications. West Conshohocken, PA; ASTM International, 2020. https://doi.org/10.1520/A0240_A0240M-20A

  41. ASTM International, B443-19 Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloy and Nickel-Chromium-Molybdenum-Silicon Alloy Plate, Sheet, and Strip. West Conshohocken, PA; ASTM International, 2019. https://doi.org/10.1520/B0443-19

  42. F. Xu et al., Microstructural Evolution and Mechanical Properties of Inconel 625 alloy During Pulsed Plasma Arc Deposition Process, J. Mater. Sci. Technol., 2013, 29, p 480–488.

    CAS  Article  Google Scholar 

  43. K. Shah, I.U. Haq, A. Khan, S.A. Shah, M. Khan and A.J. Pinkerton, Parametric Study of Development of Inconel-Steel Functionally Graded Materials by Laser Direct Metal Deposition, Mater. Des., 2014, 54, p 531–538.

    CAS  Article  Google Scholar 

  44. J. Rodriguez, K. Hoefer, A. Haelsig and P. Mayr, Functionally Graded SS 316L to Ni-Based Structures Produced by 3D Plasma Metal Deposition, Metals., 2019, 9, p 620.

    CAS  Article  Google Scholar 

  45. H. Naffakh, M. Shamanian and F. Ashrafizadeh, Microstructural Evolutions in Dissimilar Welds Between AISI 310 Austenitic Stainless Steel and Inconel 657, J. Mater. Sci., 2010, 45, p 2564–2573.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Siva Shanmugam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohan Kumar, S., Rajesh Kannan, A., Pravin Kumar, N. et al. Microstructural Features and Mechanical Integrity of Wire Arc Additive Manufactured SS321/Inconel 625 Functionally Gradient Material. J. of Materi Eng and Perform 30, 5692–5703 (2021). https://doi.org/10.1007/s11665-021-05617-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05617-3

Keywords

  • functionally gradient material
  • mechanical properties
  • microstructure
  • nickel-based superalloy
  • stainless steel
  • wire arc additive manufacturing