Skip to main content
Log in

Fatigue Assessment of 2024-T351 Aluminum Alloy Under Uniaxial Cyclic Loading

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, an experimental and numerical study of the fatigue life of 2024-T351 aluminum alloy has been investigated. For this purpose, mechanical properties of the material are obtained by tensile test. The Manson–Coffin–Basquin equation is used to estimate the fatigue life. The specimen surface is photographed using a microscope camera to examine the specimen deformation. The ratio of white to black pixels on the specimen surface that changes during loading is investigated using the image processing method. Changes in the ratio of white to black pixels indicate that material fatigue is associated with the specimen surface. The experiments are strain-controlled and in 6 different strain amplitudes on the specimens. Then, by obtaining the amplitude range of elastic and plastic strains in the stress–strain hysteresis loop, the coefficients of the Manson–Coffin–Basquin equation are calculated in a stable cycle. Using these coefficients, the Manson–Coffin–Basquin equation is presented to estimate the fatigue life of the material in an amplitude of different strains. A comparison of the results of this equation and the experimental results show a good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4. 

taken from the surface of the specimen in the strain amplitude range of 4%; (a) N = 1, (b) N = 6, (c) N = 11, (d) N = 33

Fig. 5. 
Fig. 6:
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11. 
Fig. 12. 
Fig. 13. 
Fig. 14. 
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

References

  1. M. Hadipour, F. Alambeigi, R. Hosseini, and R. Masoudinejad, A Study on the Vibrational Effects of Adding an Auxiliary Chassis to a 6-Ton Truck, J. Amer. Sci., 2011, 7(6), p 1219–1226

    Google Scholar 

  2. M. Nejad, R.K. Farhangdoost and M. Shariati, Numerical Study on Fatigue Crack Growth in Railway Wheels Under the Influence of Residual Stresses, Eng. Fail. Anal., 2015, 52, p 75–89.

    Article  Google Scholar 

  3. R. Masoudi Nejad, Using Three-Dimensional Finite Element Analysis for Simulation of Residual Stresses in Railway Wheels, Eng. Fail. Anal., 2014, 45, p 449–455.

    Article  Google Scholar 

  4. S.M. Salehi, G.H. Farrahi, S. Sohrabpoor and N.R. Masoudi, Life Estimation in the Railway Wheels under the Influence of Residual Stress Field, Int. J. Railw. Res., 2014, 1(1), p 53–60.

    Google Scholar 

  5. D. Ghahremani Moghadam, K. Farhangdoost and R. Masoudi Nejad, Microstructure and Residual Stress Distributions Under the Influence of Welding Speed in Friction Stir Welded 2024 Aluminum Alloy, Metall. Mater. Trans. B, 2016, 47(3), p 2048–2062.

    Article  Google Scholar 

  6. L.P. Borrego, L.M. Abreu, J.M. Costa and J.M. Ferreira, Analysis of Low Cycle Fatigue in AlMgSi Aluminium Alloys, Eng. Fail. Anal., 2004, 11, p 715–725.

    Article  CAS  Google Scholar 

  7. S. Khan, O. Kintzel and J. Mosler, Experimental and Numerical Lifetime Assessment of Al 2024 Sheet, Int. J. Fatigue, 2012, 37, p 112–122.

    Article  CAS  Google Scholar 

  8. C.S. Lee, M.H. Kim, M.S. Chun, T.K. Lee, and J.M. Lee, Fatigue damage model for numerical assessment of fatigue characteristics, In Materials Science Forum, 2008, p 663–666

  9. J. Howell, A. Telang, J.G. Lee, S. Choi and K.N. Subramanian, Surface damage accumulation in Sn–Ag solder joints under large reversed strains, J. Mater. Sci.: Mater. Electron., 2002, 13, p 335–344.

    CAS  Google Scholar 

  10. A.F. Blom, A. Hedlund, W. Zhao, A. Fathulla, B. Weiss, and R. Stickler, Short fatigue crack growth behaviour in Al2024 and Al7475, In EGF1, 2013.

  11. Y.C. Lin, X.M. Chen, Z.H. Liu and J. Chen, Investigation of Uniaxial Low-Cycle Fatigue Failure Behavior of Hot-Rolled AZ91 Magnesium Alloy, Int. J. Fatigue, 2013, 48, p 122–132.

    Article  CAS  Google Scholar 

  12. Y. Xiong and Y. Jiang, Fatigue of ZK60 Magnesium Alloy Under Uniaxial Loading, Int. J. Fatigue, 2014, 64, p 74–83.

    Article  CAS  Google Scholar 

  13. X. Cai and J. Xu, A Generalized Life Evaluation Formula for Uniaxial and Multiaxial Static Fatigue, Ceram. Int., 2016, 42, p 3212–3218.

    Article  CAS  Google Scholar 

  14. J. Dallmeier, O. Huber, H. Saage and K. Eigenfeld, Uniaxial Cyclic Deformation and Fatigue Behavior of AM50 Magnesium Alloy Sheet Metals Under Symmetric and Asymmetric Loadings, Mater. Des., 2015, 70, p 10–30.

    Article  CAS  Google Scholar 

  15. S. Maya-Johnson, A.J. Ramirez and A. Toro, Fatigue Crack Growth Rate of Two Pearlitic Rail Steels, Eng. Fract. Mech., 2015, 138, p 63–72.

    Article  Google Scholar 

  16. R. Masoudi Nejad, Rolling Contact Fatigue Analysis Under Influence of Residual Stresses. M.S. thesis, Sharif University of Technology, School of Mechanical Engineering, 2013

  17. R. Masoudi Nejad, S.M. Salehi, and G.H. Farrahi. Simulation of railroad crack growth life under the influence of combination mechanical contact and thermal loads, in 3rd International Conference on Recent Advances in Railway Engineering, Iran, (2013)

  18. R. Masoudi Nejad, S.M. Salehi, G.H. Farrahi, and M. Chamani. Simulation of crack propagation of fatigue in Iran rail road wheels and Effect of residual stresses, in Proceedings of the 21st International Conference on Mechanical Engineering, Iran, 2013

  19. M. Nejad, M.S. Reza and Kh. Farhangdoost, 3D Finite Element Simulation of Residual Stresses in UIC60 Rails During the Quenching Process, Therm. Sci., 2017, 21(3), p 1301–1307.

    Article  Google Scholar 

  20. K. Shiotani, T. Matsui, M. Fujigaki, and Y. Morimoto, Strain measurement using three spherical waves in digital holography, in 11th International Congress and Exhibition on Experimental and Applied Mechanics, vol. 3, 2008, p 1365–1372

  21. Y. Li, D. Wang, G. Wang, Y. Zhang, and C. Liu, Measurement of temperature field in the region near to the radiator by using digital holography, in International Symposium on Photoelectronic Detection and Imaging 2009, 2009, p 738240–738240-8

  22. Y.Y. Hung and J.Q. Wang, Dual-beam Phase Shift Shearography for Measurement of in-Plane Strains, Opt. Lasers Eng., 1996, 24, p 403–413.

    Article  Google Scholar 

  23. M.Y.Y. Hung, K.W. Long and J.Q. Wang, Measurement of Residual Stress by Phase Shift Shearography, Opt. Lasers Eng., 1997, 27, p 61–73.

    Article  Google Scholar 

  24. W. Steinchen, G. Kupfer, P. Mäckel and F. Vössing, Determination of Strain Distribution by Means of Digital Shearography, Measurement, 1999, 26, p 79–90.

    Article  Google Scholar 

  25. R.M. Groves, S.W. James, S.E. Barnes, S. Fu, D. Furfari, P.E. Irving, and R.P. Tatam, Multicomponent laser shearography for the investigation of defects in rotating machinery, in Photonics Europe. International Society for Optics and Photonics, 2004, p 546–556

  26. F. Groves, J. Barnes, I. Fu, D. Furfari, P.E. Irving, R.P. Tatam, et al., Full-field laser shearography instrumentation for the detection and characterization of fatigue cracks in titanium 10-2-3, in Journal of ASTM International. vol. 3, ed: ASTM International, 2006, p. 1–13

  27. L. Yang, P.R. Samala, S. Liu, K.W. Long and Y.L. Lee, Measurement of Nugget Size of Spot Weld by Digital Shearography, Optics Photonics, 2005, 588008–588016, p 2005.

    Google Scholar 

  28. J.L. Chen, C. Sun, Y. W. Qin, and X.H. Ji, Damage evaluation of subsurface defect in sandwich by phase-shifting digital shearography, in Key Engineering Materials, 2006, p 399–404

  29. G.P. Zou, J. Lu and W.W. Wang, Application of Electronic Shearography Speckle Pattern Interferometry to Nundestructive Testing of Wood Material, J. Harb. Eng. Univ., 2009, 30, p 357–361.

    Google Scholar 

  30. R. Masoudi Nejad, M. Shariati and K. Farhangdoost, Effect of Wear on Rolling Contact Fatigue Crack Growth in Rails, Tribol. Int., 2016, 94, p 118–125.

    Article  Google Scholar 

  31. R. Masoudi Nejad Three-dimensional analysis of rolling contact fatigue crack and life prediction in railway wheels and rails under residual stresses and wear, Ph.d. thesis, Ferdowsi University of Mashhad, School of Mechanical Engineering, 2017

  32. R. Masoudi Nejad, M. Shariati, K. Farhangdoost and A. Atrian, Rolling Contact Fatigue Analysis of Rails Under the Influence of Residual Stresses Induced by Manufacturing, Sci. Iran., 2018, 26(3), p 1427–1437.

    Google Scholar 

  33. R. Masoudi Nejad, K. Farhangdoost and M. Shariati, Microstructural analysis and fatigue fracture behavior of rail steel, Mech. Adv. Mater. Struct., 2020, 27(2), p 152–164.

    Article  CAS  Google Scholar 

  34. K. Aliakbari, M. Imanparast and R. Masoudi Nejad, Microstructure and Fatigue Fracture Mechanism for a Heavy-Duty Truck Diesel Engine Crankshaft, Sci. Iran., 2019, 26(6), p 3313–3324.

    Google Scholar 

  35. T. Takahashi, S. Hioki, I. Shohji and O. Kamiya, Fatigue Damage Evaluation by Surface Feature for Sn-3.5 Ag and Sn-0.7 Cu Solders, Mater. Trans., 2005, 46, p 2335–2343.

    Article  CAS  Google Scholar 

  36. F. Diaz, G. Kaufmann, A. Armas and G. Galizzi, Optical Measurement of the Plastic Zone Size in a Notched Metal Specimen Subjected to Low-Cycle Fatigue, Opt. Lasers Eng., 2001, 35, p 325–333.

    Article  Google Scholar 

  37. S. Vanlanduit, J. Vanherzeele, R. Longo and P. Guillaume, A Digital Image Correlation Method for Fatigue Test Experiments, Opt. Lasers Eng., 2009, 47, p 371–378.

    Article  Google Scholar 

  38. C. Kanchanomai, Y. Miyashita and Y. Mutoh, Low-Cycle Fatigue Behavior and Mechanisms of a Lead-Free Solder 96.5 Sn/3.5 Ag, J. Electron. Mater., 2002, 31, p 142–151.

    Article  CAS  Google Scholar 

  39. P. Lopez Crespo, B. Moreno, A. Lopez Moreno and J. Zapatero, Characterisation of Crack-Tip Fields In Biaxial Fatigue Based on High-Magnification Image Correlation and Electro-Spray Technique, Int. J. Fatigue, 2015, 71, p 17–25.

    Article  Google Scholar 

  40. D.L.B.R. Jurjo, C. Magluta, N. Roitman and P.B. Gonçalves, Analysis of the Structural Behavior of a Membrane Using Digital Image Processing, Mech. Syst. Signal Process., 2015, 54, p 394–404.

    Article  Google Scholar 

  41. M. Shariati, M. Mirzaei and R.M. Nejad, An Applied Method for Fatigue Life Assessment of Engineering Components Using Rigid-Insert Crack Closure Model, Eng. Fract. Mech., 2018, 204, p 421–433.

    Article  Google Scholar 

  42. M. Nejad, Kh. Reza, Farhangdoost and M. Shariati, Three-Dimensional Simulation of Rolling Contact Fatigue Crack Growth in UIC60 Rails, Tribol. Trans., 2016, 59(6), p 1059–1069.

    Article  Google Scholar 

  43. M. Nejad, Kh. Reza, M.S. Farhangdoost and M. Moavenian, Stress Intensity Factors Evaluation for Rolling Contact Fatigue Cracks in Rails, Tribol. Trans., 2017, 60(4), p 645–652.

    Article  Google Scholar 

  44. M. Shariati and R.M. Nejad, Fatigue Strength and Fatigue Fracture Mechanism for Spot Welds in U-Shape Specimens., Latin Am. J. Solids Struct., 2016, 13(15), p 2787–2801.

    Article  Google Scholar 

  45. M. Shariati, E. Mohammadi and R. Masoudi Nejad, Effect of a New Specimen Size on Fatigue Crack Growth Behavior in Thick-Walled Pressure Vessels, Int. J. Press. Vessels Piping, 2017, 150, p 1–10.

    Article  Google Scholar 

  46. R. Masoudi Nejad, M. Shariati and K. Farhangdoost, Prediction of fatigue crack propagation and fractography of rail steel, Theor. Appl. Fract. Mech., 2019, 101, p 320–331.

    Article  CAS  Google Scholar 

  47. R. Hossein Ghasemi, M. Nejad, A.J. Darbandi, Y.T. Beni, and M. Shariati, Fatigue and Fracture Behavior of A516 Steel Used in Thick-Walled Pressure Vessels. Sci. Iran., 2019. just-accepted

  48. A. Saber, M. Shariati and R. Masoudi Nejad, Experimental and Numerical Investigation of Effect of Size, Position and Geometry of Some Cutouts on Fatigue Life and Crack Growth Path on AISI1045 Steel Plate, Theor. Appl. Fract. Mech., 2020, 107, p 102506.

    Article  CAS  Google Scholar 

  49. Reza Masoudi Nejad, Numerical Study on Rolling Contact Fatigue in Rail Steel Under the Influence of Periodic Overload, Eng. Fail. Anal., 2020, 115, p 104624.

    Article  Google Scholar 

  50. R. Masoudi Nejad, M. Tohidi, A.J. Darbandi, A. Saber, and M. Shariati, Experimental and Numerical Investigation of Fatigue Crack Growth Behavior and Optimizing Fatigue Life of Riveted Joints in Al-Alloy 2024 Plates. Theor. Appl. Fract. Mech., 2020

  51. A. Standard, "E606-92, Standard Practice for Strain-Controlled Fatigue Testing, Annual Book of ASTM Standards, vol. 3, 2004

  52. L. Coffin Jr, The Problem of Thermal Stress Fatigue in Austenitic Steels at Elevated Temperatures, Knolls Atomic Power Lab., 1954

  53. S.S. Manson, Behavior of Materials Under Conditions of Thermal Stress, NACA TN 2933, 1953

  54. Y.R. Luo, C.X. Huang, G.U.O. Yi and Q.Y. Wang, Energy-Based Prediction of Low Cycle Fatigue Life of High-Strength Structural Steel, J. Iron Steel Res. Int., 2012, 19, p 47–53.

    Article  CAS  Google Scholar 

  55. F. Ellyin, Cyclic Strain Energy Density as a Criterion for Multiaxial Fatigue Failure, in ICBMFF2, 2013

  56. R.C. Gonzalez, Digital Image Processing. Pearson Education India, 2009

  57. G.R. Halford and S.S. Manson, Fatigue and Durability of Structural of Material, ASM International press, United States of America, New York, 2006, p 434

    Google Scholar 

Download references

Acknowledgment

Reza Masoudi Nejad is supported by the International Postdoctoral Exchange Fellowship Program (Talent-Introduction Program) of the People’s Republic of China (Fund No. 234384).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Shariati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabouk, E., Shariati, M., Kadkhodayan, M. et al. Fatigue Assessment of 2024-T351 Aluminum Alloy Under Uniaxial Cyclic Loading. J. of Materi Eng and Perform 30, 2864–2875 (2021). https://doi.org/10.1007/s11665-021-05613-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05613-7

Keywords

Navigation