Skip to main content
Log in

Corrosion Behavior of Rockbolts in Simulated Underground Mining Solutions Using Macro-scale and Micro-scale Electrochemical Measurements

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper focused on the corrosion of rockbolts with different S contents and yield strengths in simulated underground mining solutions using macro-electrochemical and micro-electrochemical measurements. The effect of Cl- ion on the pitting behavior was also investigated. It was found that the increase in Cl- concentration decreased the corrosion potential and corrosion current of anode polarization. The MnS inclusion was found to be the preferred site for corrosion. Based on in-situ observation and SEM characterization, it was found that the corrosion process started with the formation of corrosion trenches around the MnS, which accelerated the dissolution of the surrounding matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. H. Kang, Y. Wu, F. Gao, J. Lin and P. Jiang, Fracture Characteristics in Rock Bolts in Underground Coal Mine roadways, Int. J. Rock. Mech. Min., 2013, 62, p 105–112.

    Article  Google Scholar 

  2. S.S. Wu, H.H. Chen, P. Craig, H.L. Ramandi, W. Timms, P.C. Hagan, A. Crosky, B. Hebblewhite and S. Saydam, An Experimental Framework for Simulating Stress Corrosion Cracking in Cable Bolts, Tunn. Undergr. Sp. Tech., 2018, 76, p 121–132.

    Article  Google Scholar 

  3. D. Vandermaat, S. Saydam, P.C. Hagan and A.G. Crosky, Examination of Rockbolt Stress Corrosion Cracking Utilising Full Size Rockbolts in a Controlled Mine Environment, Int. J. Rock Mech. Min., 2016, 81, p 86–95.

    Article  Google Scholar 

  4. S.S. Wu, J.P. Li, J.P. Guo, G.B. Shi, Q.H. Gu, C.W. Lu, Stress Corrosion Cracking Fracture Mechanism of Cold-Drawn High-Carbon Cable Bolts, Mat Sci Eng a-Struct, 769 (2020).

  5. S.S. Wu, H.H. Chen, H.L. Ramandi, P.C. Hagan, A. Crosky and S. Saydam, Effects of Environmental Factors on Stress Corrosion Cracking of Cold-Drawn High-Carbon Steel Wires, Corros. Sci., 2018, 132, p 234–243.

    Article  CAS  Google Scholar 

  6. E. Villalba and A. Atrens, Hydrogen Embrittlement and Rock Bolt Stress Corrosion Cracking, Eng. Fail. Anal., 2009, 16, p 164–175.

    Article  CAS  Google Scholar 

  7. M. Shiwa, H. Masuda, H. Yamawaki, K. Ito and M. Enoki, In-Situ Observation and Acoustic Emission Analysis for SCC of MgCl2 Droplet in SUS304 Stainless Steel, Mater. Trans., 2014, 55, p 285–289.

    Article  CAS  Google Scholar 

  8. K. Wu, F. Briffod, K. Ito, I. Shinozaki, P. Chivavibul and M. Enoki, In-Situ Observation and Acoustic Emission Monitoring of the Initiation-to-Propagation Transition of Stress Corrosion Cracking in SUS420J2 Stainless Steel, Mater. Trans., 2019, 60, p 2151–2159.

    Article  CAS  Google Scholar 

  9. Z. Szklarska-Smialowska, Influence of Sulfide Inclusions on the Pitting Corrosion of Steels, Corrosion, 2013, 28, p 388–396.

    Article  Google Scholar 

  10. G. Wranglen, Pitting and Sulphide Inclusions in Steel, Corros. Sci., 1974, 14, p 331–349.

    Article  Google Scholar 

  11. M. Kadowaki, I. Muto, Y. Sugawara, T. Doi, K. Kawano and N. Hara, Improving Pitting Corrosion Resistance at Inclusions and Ductility of a Martensitic Medium-Carbon Steel: Effectiveness of Short-Time Tempering, J. Electrochem. Soc., 2018, 165, p C711–C721.

    Article  CAS  Google Scholar 

  12. I. Muto, Y. Izumiyama and N. Hara, Microelectrochemical Measurements of Dissolution of MnS Inclusions and Morphological Observation of Metastable and Stable Pitting on Stainless Steel, J. Electrochem. Soc., 2007, 154, p C439–C444.

    Article  CAS  Google Scholar 

  13. I. Muto, T. Kaneko, N. Akao and N. Hara, A Combinatorial Screening Method for Corrosion Research Using Ion-Beam-Deposited Thin-Film Alloys and Microelectrochemical Measurements, Mater. Trans., 2009, 50, p 1894–1897.

    Article  CAS  Google Scholar 

  14. I. Muto, S. Kurokawa and N. Hara, Microelectrochemical Investigation of Anodic Polarization Behavior of CrS Inclusions in Stainless Steels, J. Electrochem. Soc., 2009, 156, p C395–C399.

    Article  CAS  Google Scholar 

  15. J. Shinozaki, I. Muto, T. Omura, M. Numata and N. Hara, Local Dissolution of MnS Inclusion and Microstructural Distribution of Absorbed Hydrogen in Carbon Steel, J. Electrochem. Soc., 2011, 158, p C302–C309.

    Article  CAS  Google Scholar 

  16. A. Chiba, I. Muto, Y. Sugawara and N. Hara, A Microelectrochemical System for In Situ High-Resolution Optical Microscopy: Morphological Characteristics of Pitting at MnS Inclusion in Stainless Steel, J. Electrochem. Soc., 2012, 159, p C341–C350.

    Article  CAS  Google Scholar 

  17. A. Chiba, I. Muto, Y. Sugawara and N. Hara, Pit Initiation Mechanism at MnS Inclusions in Stainless Steel: Synergistic Effect of Elemental Sulfur and Chloride Ions, J. Electrochem. Soc., 2013, 160, p C511–C520.

    Article  CAS  Google Scholar 

  18. A. Chiba, S. Shibukawa, I. Muto, T. Doi, K. Kawano, Y. Sugawara and N. Hara, Microelectrochemical Aspects of Interstitial Carbon in Type 304 Stainless Steel: Improving Pitting Resistance at MnS Inclusion, J. Electrochem. Soc., 2015, 162, p C270–C278.

    Article  CAS  Google Scholar 

  19. L. Guan, Y. Zhou, B. Zhang, J.Q. Wang, E.H. Han and W. Ke, The Electrochemical and Morphological Characteristics of Single Metastable pit for 304 Stainless Steel under Potentiostatic Polarization, Int. J. Electrochem. Sci., 2016, 11, p 2326–2334.

    CAS  Google Scholar 

  20. S. Asano, I. Muto, Y. Sugawara and N. Hara, Relationships Between Pitting Corrosion Potentials and MnS Dissolution of 5–18 Mass% Cr Steels, J. Electrochem. Soc., 2018, 165, p C732–C742.

    Article  CAS  Google Scholar 

  21. J. William D. Callister, Materials Science and Engineering: An Introduction, John Wiley & Sons, Inc., 2007.

  22. M. Kadowaki, I. Muto, Y. Sugawara, T. Doi, K. Kawano and N. Hara, Real-Time Microelectrochemical Observations of Very Early Stage Pitting on Ferrite-Pearlite Steel in Chloride Solutions, J. Electrochem. Soc., 2017, 164, p C261–C268.

    Article  CAS  Google Scholar 

  23. B. Lin, R.G. Hu, C.Q. Ye, Y. Li and C.J. Lin, A Study on the Initiation of Pitting Corrosion in Carbon Steel in Chloride-Containing Media Using Scanning Electrochemical Probes, Electrochim Acta, 2010, 55, p 6542–6545.

    Article  CAS  Google Scholar 

  24. M. Kadowaki, I. Muto, Y. Sugawara, T. Doi, K. Kawano and N. Hara, Pitting Corrosion Resistance of Martensite of AISI 1045 Steel and the Beneficial Role of Interstitial Carbon, J. Electrochem. Soc., 2017, 164, p C962–C972.

    Article  CAS  Google Scholar 

  25. M. Nishimoto, I. Muto, Y. Sugawara and N. Hara, Artificial MnS Inclusions in Stainless Steel: Fabrication by Spark Plasma Sintering and Corrosion Evaluation by Microelectrochemical Measurements, Isij. Int., 2020, 60, p 196–198.

    Article  CAS  Google Scholar 

  26. P. Ernst, R.C. Newman, Pit Growth Studies in Stainless steel Foils. II. Effect of Temperature, Chloride Concentration and Sulphate Addition, Corros Sci, 44 (2002) 943-954.

  27. P. Ernst, R.C. Newman, Pit Growth Studies in Stainless Steel Foils. I. Introduction and Pit Growth Kinetics, Corros Sci, 44 (2002) 927-941.

  28. G.S. Frankel, Pitting Corrosion of Metals: A Review of the Critical Factors, J. Electrochem. Soc., 1998, 145, p 2186–2198.

    Article  CAS  Google Scholar 

  29. A.M. Zimer, M.A.S. De Carra, E.C. Rios, E.C. Pereira and L.H. Mascaro, Initial Stages of Corrosion Pits on AISI 1040 Steel in Sulfide Solution Analyzed by Temporal Series Micrographs Coupled with Electrochemical Techniques, Corros. Sci., 2013, 76, p 27–34.

    Article  CAS  Google Scholar 

  30. P. Pedeferri, Corrosion Science and Engineering, Springer, Gewerbestrasse 11, 6330 Cham, Switzerland, 2018.

  31. R.A. Burns, Fundamentals of Chemistry, Pearson Education, 2003.

  32. H. Böhni, T. Suter and A. Schreyer, Micro- and Nanotechniques to Study Localized Corrosion, Electrochim. Acta, 1995, 40, p 1361–1368.

    Article  Google Scholar 

  33. T. Suter and H. Böhni, A New Microelectrochemical Method to Study pit Initiation on Stainless Steels, Electrochim. Acta, 1997, 42, p 3275–3280.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was sponsored by CCTEG Coal Mining Research Institute. Some authors also want to thank the support of Guangdong Natural Science Foundation (2020A1515011033) and National Natural Science Foundation of China (51901254).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunlong Wu or Jian Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Zeng, S., Chu, X. et al. Corrosion Behavior of Rockbolts in Simulated Underground Mining Solutions Using Macro-scale and Micro-scale Electrochemical Measurements. J. of Materi Eng and Perform 30, 2632–2644 (2021). https://doi.org/10.1007/s11665-021-05612-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05612-8

Keywords

Navigation