Skip to main content
Log in

Effect of Power Duty Cycle on Plasma Electrolytic Oxidation of A356-Nb2O5 Metal Matrix Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Dense outer layer with inter-oxide composite intermediate layer coatings was formed on Al-356 matrix with Nb2O5 reinforcement particles composite via soft-sparking power duty cycle plasma electrolytic oxidation (PEO) in alkaline silicate electrolyte. The x-ray diffraction and transmission electron microscopy results proved the formation of γ-alumina layer containing Nb-Al mixed oxides. The band and discrete pores at and near the metal/coating interface were reduced by applying bipolar-soft power cycle duty discharges with higher negative half cycles. The applied mixed oxide coating showed high corrosion resistance in aggressive and corrosive mediums specially during the long-time exposure tests. This behavior was associated with the triple layered PEO coating, containing very few open channels from metal substrate to the outer layers. The high surface hardness, small surface roughness, and low surface frictions ensure high wear and abrasion resistance of the coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

References

  1. A. Pohl, Wear Resistant Sintered Aluminium Parts for Automotive Applications, Powder Metall., 2006, 49(2), p 104–106. https://doi.org/10.1179/174329006X115984

    Article  CAS  Google Scholar 

  2. S.B. Shabel and D.A. Granger, Friction and Wear of Aluminum-Silicon Alloys, ASM Handbook. P.J. Blau Ed., Springer, Berlin, 2021, p 785–794

    Google Scholar 

  3. E. Diego, R. D. Lozano, M. Solís, Wear Mechanisms Experienced by an Automotive Grade Al-Si-Cu Alloy Under Sliding Conditions, Ingenier. mecáni. tecnolog. desarroll vol.5 no.3 México sep. (2015).

  4. B. Lidia, Enhancement in Sustained Friction and Wear Resistance of Nanoporous Aluminum Oxide Films Obtained by Controlled Electrochemical Oxidation Process, RSC Adv., 2019, 9, p 25056–25063. https://doi.org/10.1039/C9RA05702A

    Article  Google Scholar 

  5. M. Djafri, M. Bouchetara, C. Busch, S. Khatir, T. Khatir, S. Weber, K. Shbaita and M. Abdel Wahab, Influence of Thermal Fatigue on the Wear Behavior of Brake Discs Sliding against Organic and Semimetallic Friction Materials, Tribol. Trans., 2018, 61(5), p 861–868. https://doi.org/10.1080/10402004.2018.1437491

    Article  CAS  Google Scholar 

  6. N.E. Udoye and O.S.I. Fayomi, Assessment of Wear Resistance of Aluminium Alloy in Manufacturing Industry-A Review, Proc. Manuf., 2019, 35(2019), p 1383–1386. https://doi.org/10.1016/j.promfg.2019.09.007

    Article  Google Scholar 

  7. P. Kishore, Wear Analysis of Al 5052 Alloy with Varying Percentage of Tungsten Carbide, AIP Conf. Proc., 2019, 2128, p 040003. https://doi.org/10.1063/1.5117965

    Article  CAS  Google Scholar 

  8. R. Pramod, G.B.V. Kumar, P.S.S. Gouda and A.T. Mathew, A Study on the Al2O3 reinforced Al7075 Metal Matrix Composites Wear behavior using Artificial Neural Networks, Mater. Today Proc., 2018, 5(5), p 11376–11385. https://doi.org/10.1016/j.matpr.2018.02.105

    Article  CAS  Google Scholar 

  9. H. Sakthisudhan, S. Jose and K. Manisekar, Dry Sliding Wear Behaviour of Single and Dual Ceramic Reinforcements Premixed with Al Powder in AA6061 Matrix, J. Mater. Res. Technol., 2021 https://doi.org/10.1016/j.jmrt.2018.01.005

    Article  Google Scholar 

  10. A.V. Skazochkin and G.G. Bondarenko, Research of Surface Wear Resistance of Aluminum Alloy Modified with Minerals using Sclerometry Method, Dev. Methods Measur., 2019, 10, p 263–270. https://doi.org/10.21122/2220-9506-2019-10-3-263-270

    Article  Google Scholar 

  11. H. Alrobei, Effect of Different Parameters and Aging Time on Wear Resistance and Hardness of SiC-B4C Reinforced AA6061 Alloy, J. Mech. Sci. Technol., 2020, 34, p 2027–2034. https://doi.org/10.1007/s12206-020-0424-9

    Article  Google Scholar 

  12. Z. Jin, L. Zhu and H. Wang, Microstructures and Wear Resistance of Al-25 wt.%Si Coatings Prepared by High-Efficiency Supersonic Plasma Spraying, J. Therm. Spray. Technol., 2019, 28, p 1308–1317. https://doi.org/10.1007/s11666-019-00898-6

    Article  CAS  Google Scholar 

  13. S. Peddavarapu and R.J. Bharathi, Dry Sliding Wear Behaviour of AA6082-5%SiC AND AA6082-5%TiB2 Metal Matrix Composites, Mater. Today Proc., 2018, 5(6), p 14507–14511. https://doi.org/10.1016/j.matpr.2018.03.038

    Article  CAS  Google Scholar 

  14. T.W. Clyne and S.C. Troughton, A Review of Recent Work on Discharge Characteristics During Plasma Electrolytic Oxidation of Various Metals, Int. Mater. Rev., 2019, 64, p 127–162. https://doi.org/10.1080/09506608.2018.1466492

    Article  CAS  Google Scholar 

  15. W. Gebarowski and S. Pietrzyk, Influence of the Cathodic Pulse on the Formation and Morphology of Oxide Coatings on Aluminium Produced by Plasma Electrolytic Oxidation, Arch. Metall. Mater., 2013, 58(1), p 241–245. https://doi.org/10.2478/v10172-012-0180-7

    Article  CAS  Google Scholar 

  16. S. Wang, X. Liu, X. Yin and N. Du, Influence of Electrolyte Components on the Microstructure and Growth Mechanism of Plasma Electrolytic Oxidation Coatings on 1060 Aluminum Alloy, Surf. Coat. Tech., 2020, 381, p 125214. https://doi.org/10.1016/j.surfcoat.2019.125214

    Article  CAS  Google Scholar 

  17. Q.B. Li, C.C. Liu, W.B. Yang and J. Liang, Growth Mechanism and Adhesion of PEO Coatings on 2024Al Alloy, Surf. Eng., 2016, 15, p 760–766. https://doi.org/10.1080/02670844.2016.1200860

    Article  CAS  Google Scholar 

  18. W. Gębarowski and S. Pietrzyk, Growth Characteristics of the Oxide Layer on Aluminium in the Process of Plasma Electrolytic Oxidation, Arch. Metall. Mater., 2014, 59(1), p 1–5. https://doi.org/10.2478/amm-2014-0070

    Article  CAS  Google Scholar 

  19. A.R. Fatkullin, E.V. Parfenov, A. Yerokhin, D.M. Lazarev and A. Matthews, Effect of Positive and Negative Pulse Voltages on Surface Properties and Equivalent Circuit of the Plasma Electrolytic Oxidation Process, Surf. Coatings Technol., 2015 https://doi.org/10.1016/j.surfcoat.2015.07.075

    Article  Google Scholar 

  20. A. Nominé, J. Martin, C. Noël, G. Henrion, T. Belmonte, I.V. Bardin and P. Lukeš, Surface Charge at the Oxide/Electrolyte Interface: Toward Optimization of Electrolyte Composition for Treatment of Aluminum and Magnesium by Plasma Electrolytic Oxidation, Langmuir, 2016, 32(5), p 1405–1409. https://doi.org/10.1021/acs.langmuir.5b03873

    Article  CAS  Google Scholar 

  21. A. Nominé, J. Martin, C. Noël, G. Henrion, T. Belmonte, I.V. Bardin, V.L. Kovalev and G. Rakoch, The Evidence of Cathodic Micro-Discharges during Plasma Electrolytic Oxidation Process, Appl. Phys. Lett., 2014, 104(8), p 81603. https://doi.org/10.1063/1.486642

    Article  Google Scholar 

  22. A.G. Rakoch, A.A. Gladkova, Z. Linn and D.M. Strekalina, The Evidence of Cathodic Micro-Discharges during Plasma Electrolytic Oxidation of Light Metallic Alloys and Micro-Discharge Intensity Depending on pH of the Electrolyte, Surf. Coat. Technol., 2015, 269, p 138–144. https://doi.org/10.1016/j.surfcoat.2015.02.026

    Article  CAS  Google Scholar 

  23. J. Martin, P. Haraux, V. Ntomprougkidis, S. Migot, S. Bruyère and G. Henrion, Characterization of Metal Oxide Micro/nanoparticles Elaborated by Plasma Electrolytic Oxidation of Aluminium and Zirconium Alloys, Surf. Coat. Technol., 2020, 397, p 125987. https://doi.org/10.1016/j.surfcoat.2020.125987

    Article  CAS  Google Scholar 

  24. W. Zhang, B. Tian, K. Du, H. Zhang and F. Wang, Preparation and Corrosion Performance of PEO Coating With Low Porosity on Magnesium Alloy AZ91D In Acidic KF System, Int. J. Electrochem. Sci., 2011, 6, p 5228–5248.

    CAS  Google Scholar 

  25. F. Tjiang, L.W. Ye, Y.J. Huang, C.C. Chou and D.S. Tsai, Effect of Processing Parameters on Soft Regime Behavior of Plasma Electrolytic Oxidation of Magnesium, Ceram. Int., 2017, 43, p 567–572. https://doi.org/10.1016/j.ceramint.2017.05.179

    Article  CAS  Google Scholar 

  26. D.S. Tsai and C.C. Chou, Review of the Soft Sparking Issues in Plasma Electrolytic Oxidation, Metals, 2018, 8, p 105. https://doi.org/10.3390/met8020105

    Article  CAS  Google Scholar 

  27. N. Xiang, R. Song, C. Wang, Q. Mao, Y. Ge and J. Ding, Formation of Corrosion Resistant Plasma Electrolytic Oxidation Coatings on Aluminum Alloy with Addition of Sodium Tungstate Species, Corrosion Eng. Sci. Technol., 2016, 51, p 146–154. https://doi.org/10.1179/1743278215Y.0000000040

    Article  CAS  Google Scholar 

  28. G. Asrat Mengesha, J.P. Chu, B.-S. Lou and J.-W. Lee, Corrosion Performance of Plasma Electrolytic Oxidation Grown Oxide Coating on Pure Aluminum: Effect of Borax Concentration, J. Mater. Res. Technol., 2020, 9(4), p 8766–8779. https://doi.org/10.1016/j.jmrt.2020.06.020

    Article  CAS  Google Scholar 

  29. D.S. Tsai, G.-W. Chen and C.-C. Chou, Probe the Micro Arc Softening Phenomenon with Pulse Transient Analysis in Plasma Electrolytic Oxidation, Surf. Coat. Technol., 2019, 357, p 235–243. https://doi.org/10.1016/j.surfcoat.2018.09.080

    Article  CAS  Google Scholar 

  30. M. Amiri et al., Investigation of Aluminum Oxide Coatings Created by Electrolytic Plasma Method in Different Potential Regimes, J. Compos. Comp., 2020, 2(4), p 115–122.

    Google Scholar 

  31. F. Simchen et al., Introduction to Plasma Electrolytic Oxidation—An Overview of the Process and Applications, Coatings, 2020, 10(7), p 628. https://doi.org/10.3390/coatings10070628

    Article  CAS  Google Scholar 

  32. F. Aydin and A. Ayday, Role of Graphene Additive on Wear and Electrochemical Corrosion Behaviour of Plasma Electrolytic Oxidation (PEO) Coatings on Mg–MWCNT Nanocomposite, Surf. Eng., 2020, 36(8), p 791–799. https://doi.org/10.1080/02670844.2019.1689640

    Article  CAS  Google Scholar 

  33. B. Kasalica and M. Petković-Benazzouz, Mechanisms of Plasma Electrolytic Oxidation of Aluminum at the Multi-hour Timescales, Surf. Coat. Technol., 2020, 390, p 125681. https://doi.org/10.1016/j.surfcoat.2020.125681

    Article  CAS  Google Scholar 

  34. M.P. Kamil, M. Kaseem and Y.G. Ko, Soft Plasma Electrolysis with Complex Ions for Optimizing Electrochemical Performance, Sci. Rep., 2017, 7, p 44458. https://doi.org/10.1038/srep44458(2017)

    Article  Google Scholar 

  35. Y. Cheng, T. Wang, S. Li, Y. Cheng, J. Cao and H. Xie, The Effects of Anion Deposition and Negative Pulse on the Behaviors of Plasma Electrolytic Oxidation (PEO)da Systematic Study of the PEO of a Zirlo Alloy in Aluminate Electrolytes, Electrochim. Acta, 2017, 225, p 47–68. https://doi.org/10.1016/j.electacta.2016.12.115

    Article  CAS  Google Scholar 

  36. L. Shao, H. Li, B. Jiang, C. Liu and X. Gu, A Comparative Study of Corrosion Behavior of Hard Anodized and Micro-Arc Oxidation Coatings on 7050 Aluminum Alloy, Metals, 2018, 8(3), p 165. https://doi.org/10.3390/met8030165

    Article  CAS  Google Scholar 

  37. J. Bajat, R. Vasilic, S. Stojadinovic and V. Miskovic-Stankovic, Corrosion Stability of Oxide Coatings Formed by Plasma Electrolytic Oxidation of Aluminum: Optimization of Process Time, Corrosion, 2013, 69, p 693–702. https://doi.org/10.5006/0859

    Article  CAS  Google Scholar 

  38. J. Martin, A. Nominé, F. Brochard, J.L. Briançon, C. Noël, T. Belmonte, T. Czerwiec and G. Henrion, Delay in Micro-Discharges Appearance During PEO of Al: Evidence of a Mechanism of Charge Accumulation at the Electrolyte/oxide Interface, Appl. Surf. Sci., 2017, 410, p 29–41. https://doi.org/10.1016/j.apsusc.2017.03.088

    Article  CAS  Google Scholar 

  39. J.A. Curran and T.W. Clyne, Porosity in Plasma Electrolytic Oxide Coatings, Acta Mater., 2006, 54, p 1985–1993. https://doi.org/10.1016/j.actamat.2005.12.029

    Article  CAS  Google Scholar 

  40. G. Sundararajan and L. Rama, Mechanisms Underlying the Formation of Thick Alumina Coatings Through the MAO Coating Technology, Surf. Coat. Technol., 2003, 167(2–3), p 269–277. https://doi.org/10.1016/S0257-8972(02)00918-0

    Article  CAS  Google Scholar 

  41. A.B. Rogov, A. Yerokhin and A. Matthews, The Role of Cathodic Current in Plasma Electrolytic Oxidation of Aluminum: Phenomenological Concepts of the “Soft Sparking” Mode, Langmuir, 2017, 33, p 11059e11069. https://doi.org/10.1021/acs.langmuir.7b02284

    Article  CAS  Google Scholar 

  42. P.V. Kumar and B. Shantanu, Plasma Processing of Aluminum Alloys to Promote Adhesion: A Critical Review, Rev. Adhesion Adhesives, 2017, 5(1), p 79–104.

    Article  Google Scholar 

  43. C. Cheng and A.H.W. Ngan, Theoretical Pore Growth Models for Nanoporous Alumina, Nanoporous Alumina, 2015, 2, p 31–60. https://doi.org/10.1007/978-3-319-20334-8_2

    Article  CAS  Google Scholar 

  44. V.P. Singh, A. Sil and R. Jayaganthan, Wear of Plasma Sprayed Conventional and Nanostructured Al2O3 and Cr2O3, Based Coat. Trans. Indian. Inst. Met., 2012, 65, p 1–12. https://doi.org/10.1007/s12666-011-0070-0.1

    Article  Google Scholar 

  45. V.M. Dumitrascu, L. Benea and N.L. Simionescu, Evaluation of Sealing Process on the Surface Properties of Nanoporous Aluminum Oxide Layers Electrochemically Growth on 1050 Aluminum Alloys Surface, IOP Conf. Ser. Mater. Sci. Eng., 2018, 374, p 012013. https://doi.org/10.1088/1757-899X/374/1/012013

    Article  Google Scholar 

  46. R.O. Hussein, D.O. Northwood and X. Nie, Processing-Microstructure Relationships in the Plasma Electrolytic Oxidation (PEO) Coating of a Magnesium Alloy, Mater. Sci. Appl., 2014, 5, p 124–139. https://doi.org/10.4236/msa.2014.53017

    Article  CAS  Google Scholar 

  47. S.H. Awad and H. Qian, Effect of Cathodic Component of Current on Porosity and Hardness Characteristics of Micro Plasa Oxidation (MPO) Coatings on Aluminum Alloy, Trans. Nonferrous Met. Soc. China, 2005, 15(1), p 113–118.

    CAS  Google Scholar 

  48. S. Sharma, T. Nanda and O.P. Pandey, Effect of Particle Size on Dry Sliding Wear Behavior of Sillimanite Reinforced Aluminum Matrix Composites, Cer. Inter., 2018, 44(1), p 104–114. https://doi.org/10.1016/j.ceramint.2017.09.132

    Article  CAS  Google Scholar 

  49. T. Wu, C. Blawert and M.L. Zheludkevich, Influence of Secondary Phases of AlSi9Cu3 Alloy on the Plasma Electrolytic Oxidation Coating Formation Process, J. Mat. Sci. Technol., 2020, 50, p 75–85. https://doi.org/10.1016/j.jmst.2019.12.031

    Article  Google Scholar 

  50. H. Duan and C. Yan, Effect of Electrolyte Additives on Performance of Plasma Electrolytic Oxidation Films Formed on Magnesium Alloy AZ91D, Electrochim. Acta, 2007, 52, p 3785–3793. https://doi.org/10.1016/j.electacta.2006.10.066

    Article  CAS  Google Scholar 

  51. J.-H. Wang, M.-H. Du, F.-Z. Han and J. Yang, Effects of the Ratio of Anodic and Cathodic Currents on the Characteristics of Micro-Arc Oxidation Ceramic Coatings on Al Alloys, Appl. Surf. Sci., 2014, 292, p 658–664. https://doi.org/10.1016/j.apsusc.2013.12.028

    Article  CAS  Google Scholar 

  52. A. Nomine, J. Martin, G. Henrion and T. Belmonte, Effect of Cathodic Micro-Discharges on Oxide Growth during Plasma Electrolytic Oxidation (PEO), Surf. Coat. Technol., 2015, 269, p 131–137. https://doi.org/10.1016/j.surfcoat.2015.01.076

    Article  CAS  Google Scholar 

  53. A.B. Rogov and V.R. Shayapov, The Role of Cathodic Current in PEO of Aluminum: Influence of Cationic Electrolyte Composition on the Transient Current-Voltage Curves and the Discharges Optical Emission Spectra, Appl. Surf. Sci., 2017, 394, p 323–332. https://doi.org/10.1016/j.apsusc.2016.10.115

    Article  CAS  Google Scholar 

  54. G.A. Mengesha, J.P. Chu, B.S. Lou and J.W. Lee, Effects of Processing Parameters on the Corrosion Performance of Plasma Electrolytic Oxidation Grown Oxide on Commercially Pure Aluminum, Metals., 2020, 10, p 394. https://doi.org/10.3390/met10030394

    Article  CAS  Google Scholar 

  55. R. Bahador, N. Hosseinabadi and A. Yaghtin, Microstructural and Mechanical Characterizations of Stir Cast Aluminum 356–Nb2O5 Composite, Adv. Compos. Hybrid. Mater., 2020 https://doi.org/10.1007/s42114-020-00173-1

    Article  Google Scholar 

  56. A. Miftakhova and Y. Chen, Effect of Rolling on the Friction Coefficient in Three-Body Contact, Adv. Mechanic. Eng. (AIME), 2019, 11(8), p 1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Hosseinabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahador, R., Hosseinabadi, N. & Yaghtin, A. Effect of Power Duty Cycle on Plasma Electrolytic Oxidation of A356-Nb2O5 Metal Matrix Composites. J. of Materi Eng and Perform 30, 2586–2604 (2021). https://doi.org/10.1007/s11665-021-05597-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05597-4

Keywords

Navigation