Skip to main content

Advertisement

Log in

Influence of Stress Ratio and Contact Pressure on Fretting Fatigue Behavior of Modified 9Cr-1Mo Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Influence of contact pressure and maximum cyclic stress (σmax) on the fretting fatigue behavior of modified 9Cr-1Mo steel has been studied using contact pads made of the same steel. The contact pressure was varied from 50 to 200 MPa using σmax of 400 and 500 MPa at a stress ratio (R) of 0.1. The fatigue life was observed to decrease in the presence of fretting action. For a given σmax the fretting fatigue life of the steel decreased with an increase in contact pressure up to 100 MPa beyond which saturation was observed. The ratio of slip to stick area increased with the contact pressure. This is in agreement with the increased depth of the fretting-induced debris and roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P.L. Hurricks, The Mechanism of Fretting—A Review, Wear, 1970, 15(6), p 389–409

    Article  Google Scholar 

  2. R.B. Waterhouse, Fretting Fatigue, Mater. Sci. Eng., 1976, 25, p 201–206

    Article  CAS  Google Scholar 

  3. R. Gnanamoorthy and R. Rosi Reddy, Fretting Fatigue in AISI 1015 Steel, Bull. Mater. Sci., 2002, 25(2), p 109–114

    Article  CAS  Google Scholar 

  4. J.M. Wallace and R.W. Neu, Fretting Fatigue Crack Nucleation in Ti-6Al-4V, Fatigue Fract. Eng. Mater. Struct., 2003, 26(3), p 199–214

    Article  CAS  Google Scholar 

  5. M. Jayaprakash and S. Ganesh Sundara Raman, Influence of Pad Span on Fretting Fatigue Behaviour of AISI 304 Stainless Steel, J. Mater. Sci., 2007, 42(12), p 4308–4315

    Article  CAS  Google Scholar 

  6. S. Ganesh Sundara Raman and M. Jayaprakash, Plain Fatigue and Fretting Fatigue Behaviour of AISI 304 Austenitic Stainless Steel, Mater. Sci. Technol., 2007, 23(1), p 45–54

    Article  Google Scholar 

  7. M. Jayaprakash, Y. Mutoh, K. Asai, K. Ichikawa, and S. Sukarai, Effect of Contact Pad Rigidity on Fretting Fatigue Behavior of NiCrMoV Turbine Steel, Int. J. Fatigue, 2010, 32(11), p 1788–1794

    Article  CAS  Google Scholar 

  8. G.L. Goss and D.W. Hoeppner, Normal Load Effects in Fretting Fatigue of Titanium and Aluminum Alloys, Wear, 1974, 27(2), p 153–159

    Article  CAS  Google Scholar 

  9. K. Iyer and S. Mall, Effects of Cyclic Frequency and Contact Pressure on Fretting Fatigue Under Two-Level Block Loading, Fatigue Fract. Eng. Mater. Struct., 2000, 23(4), p 335–346

    Article  CAS  Google Scholar 

  10. K. Iyer and S. Mall, Analyses of Contact Pressure and Stress Amplitude Effects on Fretting Fatigue Life, J. Eng. Mater. Technol., 2001, 123(1), p 85–93

    Article  Google Scholar 

  11. K. Nakazawa, N. Maruyama and T. Hanawa, Effect of Contact Pressure on Fretting Fatigue of Austenitic Stainless Steel, Tribol. Int., 2003, 36(2), p 79–85

    Article  CAS  Google Scholar 

  12. H. Lee and S. Mall, Effect of Dissimilar Mating Materials and Contact Force on Fretting Fatigue Behavior of Ti-6Al-4V, Tribol. Int., 2004, 37(1), p 35–44

    Article  CAS  Google Scholar 

  13. N.K.R. Naidu and S. Ganesh Sundara Raman, Effect of Contact Pressure on Fretting Fatigue Behaviour of Al-Mg-Si Alloy AA6061, Int. J. Fatigue, 2005, 27(3), p 283–291

    Article  CAS  Google Scholar 

  14. R. Sadeler, Influence of Contact Pressure on Fretting Fatigue Behaviour of A.A. 2014 Alloy with Dissimilar Mating Material, Fatigue Fract. Eng. Mater. Struct., 2006, 29(12), p 1039–1044

    Article  CAS  Google Scholar 

  15. G.Q. Wu, X.L. Liu, H.H. Li, W. Sha, and L.J. Huang, Effect of Contact Pressure on Fretting Fatigue Behavior of Ti-1023, Wear, 2015, 326, p 20–27

    Article  Google Scholar 

  16. D. Takazaki, M. Kubota, R. Komoda, Y. Oku, T. Makino, and M. Sugino, Effect of Contact Pressure on Fretting Fatigue Failure of Oil-Well Pipe Material, Int. J. Fatigue, 2017, 101, p 67–74

    Article  Google Scholar 

  17. V.K. Verma, H. Naseem, S. Ganesh Sundara Raman, H. Murthy, A.N. Majila, and D.C. Fernando, Effect of Contact Pressure and Stress Ratio on the Fretting Fatigue Behaviour of Ti-6Al-4V, Mater. Sci. Eng. A, 2017, 707, p 647–656

    Article  CAS  Google Scholar 

  18. P. Kalyanasundaram, B. Raj, V. Prakash, and R. Ranga, Detection of Simulated Steam Leak into Sodium in Steam Generator of PFBR by Argon Injection Using Signal Analysis Techniques, Nucl. Technol., 2013, 182(3), p 249–258

    Article  CAS  Google Scholar 

  19. Standard method of fretting fatigue testing, S015 (2nd edition), the Japan Society of Mechanical Engineers, 2009

  20. G.L. Goss and D.W. Hoeppner, Characterization of Fretting Fatigue Damage by SEM Analysis, Wear, 1973, 24(1), p 77–95

    Article  Google Scholar 

  21. K. Endo and H. Goto, Initiation and propagation of fretting fatigue cracks, Wear, 1976, 38(2), p 311–324

    Article  CAS  Google Scholar 

  22. G.E. Dieter and D.J. Bacon, Mechanical Metallurgy, McGraw-Hill, New York, 1986

    Google Scholar 

  23. K. Nishioka and K. Hirakawa, Fundamental Investigations of Fretting Fatigue: Part 3, Some Phenomena and Mechanisms of Surface Cracks, Bull. JSME, 1969, 12(51), p 397–407

    Article  Google Scholar 

  24. C.D. Lykins, S. Mall, and V.K. Jain, Combined Experimental–Numerical Investigation of Fretting Fatigue Crack Initiation, Int. J. Fatigue, 2001, 23(8), p 703–711

    Article  CAS  Google Scholar 

  25. S.S. Samant, I.V. Singh, and R.N. Singh, Effect of Tempering and Rolling on Fatigue Crack Growth Behavior of Modified 9Cr-1Mo Steel, J. Mater. Eng. Perform., 2018, 27(11), p 5898–5912

    Article  CAS  Google Scholar 

  26. D.A. Hills and D. Nowell, Mechanics of Fretting Fatigue, Springer, Berlin, 1994

    Book  Google Scholar 

  27. S.K. Lee, K. Nakazawa, M. Sumita, and N. Maruyama, Effects of contact load and contact curvature radius of cylinder pad on fretting fatigue in high strength steel, Fretting Fatigue: Current Technology and Practices, ASTM Stock Numer: STP 1367, D.W. Hoeppner, V. Chandrasekaran,and C.B. Elliott III, Aug. 31, 1998 (University of Utah), ASTM International, 2000, pp 199–212

  28. K. Nakazawa, K. Sumita, and N. Maruyama, Effect of contact pressure on fretting fatigue of high strength steel and titanium alloy, Standardization of fretting fatigue test methods and equipment, M.H. Attia and R.B. Waterhouse, ASTM International, 1992, pp. 115–125

Download references

Acknowledgments

The authors express their deep sense of gratitude to Dr. R. Divakar, Associate Director, Materials Engineering Group and Dr. M. Vasudevan, Head, Materials Development and Technology Division, IGCAR, for their keen interest and encouragement in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Shiva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiva, V., Goyal, S., Parthasarathi, N.L. et al. Influence of Stress Ratio and Contact Pressure on Fretting Fatigue Behavior of Modified 9Cr-1Mo Steel. J. of Materi Eng and Perform 30, 2822–2831 (2021). https://doi.org/10.1007/s11665-021-05581-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05581-y

Keywords

Navigation