Skip to main content
Log in

Effect of Fe Content on the Microstructure and Mechanical and Electrical Properties of Cu-Fe In Situ Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Cu-Fe in situ composites with different Fe contents were prepared by casting and cold drawing deformation. The microstructure was observed, and the mechanical and electrical properties were measured during the deformation process. The composites with a higher Fe content show a higher strength but a lower electrical conductivity because the Fe content is high enough to produce sufficient dendrite structures, resulting in strengthening and electronic scattering effects. The strain hardening of the Cu matrix mainly results in the strengthening of Cu-3 wt.% Fe. The strengthening of Cu-6 wt.% Fe is mainly attributed to the strain hardening of the Cu matrix at a lower draw ratio and the increased interface density at a higher draw ratio. A larger amount of Fe precipitates and a higher interface density lead to an improvement in the strength of Cu-12 wt.% Fe. The conductivities of the Cu-3 wt.% Fe and Cu-6 wt.% Fe alloys are similar due to the continuous Cu matrix or similar electron transmission in the Cu matrix, while that of Cu-12 wt.% Fe is much lower due to the smaller dendrite spacing and the larger amount of Fe precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Y. Sakai and H.J. Schneider-Muntau, Ultra-High Strength, High Conductivity Cu-Ag Alloy Wires, Acta Mater., 1997, 45, p 1017.

    Article  CAS  Google Scholar 

  2. J.B. Liu, L. Meng and Y.W. Zeng, Microstructure Evolution and Properties of Cu-Ag Microcomposites with Different Ag Content, Mater. Sci. Eng. A, 2006, 435–436, p 237.

    Article  Google Scholar 

  3. N.D. Stepanov, A.V. Kuznetsov, G.A. Salishchev, N.E. Khlebova and V.I. Pantsyrny, Evolution of Microstructure and Mechanical Properties in Cu-14%Fe Alloy During Severe Cold Rolling, Mater. Sci. Eng. A, 2013, 564, p 264.

    Article  CAS  Google Scholar 

  4. X.P. Lu, D.W. Yao, Y. Chen, L.T. Wang, A.P. Dong, L. Meng and J.B. Liu, Microstructure and Hardness of Cu-12% Fe Composite at Different Drawing Strains, J. Zhejiang Univ.-Sci. A, 2014, 15, p 149.

    Article  CAS  Google Scholar 

  5. V.A. Beloshenko, VYu. Dmitrenko and V.V. Chishko, Modifying the Structure and Properties of Cu-Fe Composites by the Methods of Pressure Formation, Phys. Met. Metallogr., 2015, 45, p 1017.

    Google Scholar 

  6. X. Sauvage, F. Wetscher and P. Pareige, Mechanical Alloying of Cu and Fe Induced by Severe Plastic Deformation of a Cu-Fe Composite, Acta Mater., 2005, 53, p 2127.

    Article  CAS  Google Scholar 

  7. L. Thilly, M. Véron, O. Ludwig, F. Lecouturier, J.P. Peyrade and S. Askénazy, High-Strength Materials: In-Situ Investigations of Dislocation Behaviour in Cu-NbMultifilamentary Nanostructured Composites, Philos. Mag. A, 2002, 82, p 925.

    Article  CAS  Google Scholar 

  8. W.A. Spitzig and S.B. Biner, Comparison of Strengthening in Wire-Drawn or Rolled Cu–20%Nb with a Dislocation Accumulation Model, J. Mater. Sci., 1993, 28, p 4623.

    Article  CAS  Google Scholar 

  9. Y. Jin, K. Adachi, T. Takeuchi and H.G. Susuki, Ageing Characteristics of Cu–Cr In-Situ Composite, J. Mater. Sci., 1998, 33, p 1333.

    Article  CAS  Google Scholar 

  10. Y. Jin, K. Adachi, T. Takeuchi and H.G. Suzuki, Correlation Between the Cold-Working and Aging Treatments in a Cu–15 wtpct Cr In Situ Composite, Metall. Mater. Trans. A, 1998, 29, p 2195.

    Article  Google Scholar 

  11. Y.S. Go and W.A. Spitzig, Strengthening in Deformation-Processed Cu–20% Fe Composites, J. Mater. Sci., 1991, 26, p 1631.

    Article  Google Scholar 

  12. W.A. Spitzig, L.S. Chumbley, J.D. Verhoeven, Y.S. Go and H.L. Downing, Effect of Temperature on the Strength and Conductivity of a Deformation Processed Cu–20%Fe Composite, J. Mater. Sci., 1992, 27, p 2005.

    Article  CAS  Google Scholar 

  13. C. Biselli and D.G. Morris, Microstructure and Strength of Cu–Fe In Situ Composites After Very High Drawing Strains, Acta Mater., 1996, 44, p 493.

    Article  CAS  Google Scholar 

  14. C. Biselli and D.G. Morris, Microstructure and Strength of Cu–Fe In Situ Composites Obtained from Prealloyed Cu–Fe Powders, Acta Mater., 1992, 42, p 163.

    Article  Google Scholar 

  15. L. Qu, E.G. Wang, K. Han, X.W. Zuo, L. Zhang, P. Jia and J.C. He, Studies of Electrical Resistivity of an Annealed Cu–Fe Composite, J. Appl. Phys., 2013, 113, p 11.

    Article  Google Scholar 

  16. E.G. Wang, L. Qu, X.W. Zuo, L. Zhang and J.C. He, Evaluation of Annealing Treatment in a Deformed Cu-12.8%Fe Composite, Rev. Metall., 2013, 110, p 289.

    Article  CAS  Google Scholar 

  17. J.D. Verhoeven, S.C. Chueh and E.D. Gibson, Strength and Conductivity of In Situ Cu–Fe Alloys, J. Mater. Sci., 1989, 24, p 1748.

    Article  CAS  Google Scholar 

  18. K.M. Liu, X.C. Sheng, Q.P. Li, M.C. Zhang, N.L. Han, G.Y. He, J. Zou, W. Chen and A. Atrens, Microstructure and Strengthening Model of Cu–Fe In-Situ Composites, Mater., 2020, 13, p 3464.

    Article  CAS  Google Scholar 

  19. J.S. Song, S.I. Hong and H.S. Kim, Heavily Drawn Cu–Fe–Ag and Cu–Fe–Cr Microcomposites, J. Mater. Process. Technol., 2001, 113, p 610.

    Article  CAS  Google Scholar 

  20. S.I. Hong, J.S. Song and H.S. Kim, Thermo-Mechanical Processing and Properties of Cu–9Fe–1.2Co Microcomposite Wires, Scripta Mater., 2001, 45, p 1295.

    Article  CAS  Google Scholar 

  21. H.Y. Gao, J. Wang, D. Shu and B.D. Sun, Effect of Ag on the Microstructure and Properties of Cu–Fe In Situ Composites, Scripta Mater., 2005, 53, p 1105.

    Article  CAS  Google Scholar 

  22. H.Y. Gao, J. Wang, D. Shu and B.D. Sun, Effect of Ag on the Aging Characteristics of Cu–Fe In Situ Composites, Scripta Mater., 2006, 54, p 1931.

    Article  CAS  Google Scholar 

  23. B.D. Sun, H.Y. Gao, J. Wang and D. Shu, Strength of Deformation Processed Cu–Fe–Ag In Situ Composites, Mater. Lett., 2007, 61, p 1002.

    Article  CAS  Google Scholar 

  24. H.Y. Gao, J. Wang, D. Shu and B.D. Sun, Microstructure and Strength of Cu–Fe–Ag in Situ Composites, Mater. Sci. Eng. A., 2007, 452–453, p 367.

    Article  Google Scholar 

  25. H.Y. Gao, J. Wang, D. Shu and B.D. Sun, Microstructure and Properties of Cu–11Fe–6Ag In Situ Composite After Thermo-Mechanical Treatments, J. Alloys Compd., 2007, 438, p 268.

    Article  CAS  Google Scholar 

  26. Z. Yao, J. Ge and S. Liu, Effect of Doping with Zr on the Properties of the Deformation-Processed Cu–Fe In-Situ Composites, J. Mater. Sci., 2006, 41, p 3825.

    Article  CAS  Google Scholar 

  27. Z.W. Wu, Y. Chen and L. Meng, Effects of Rare Earth Elements on Annealing Characteristics of Cu–6wt.% Fe Composites, J. Alloys Compd, 2009, 477, p 198.

    Article  CAS  Google Scholar 

  28. J.Q. Guo, H. Yang, P. Liu, S.G. Jia and L.M. Bi, Effect of Zr on Thermal Stability of Cu–Fe In-Situ Composite, Adv. Mater. Res., 2010, 150–151, p 1462.

    Article  Google Scholar 

  29. J.S. Song, S.I. Hong and Y.G. Park, Deformation Processing and Strength/Conductivity Properties of Cu–Fe–Ag Microcomposites, J. Alloys Compd., 2005, 388, p 69.

    Article  CAS  Google Scholar 

  30. "Standard Test Methods for Tension Testing of Metallic Materials," ANSI/ASTM E8/E8M REV A–2016, American National Standards Institute, 2016, p 3–12.

  31. L. Thilly, M. Véron, O. Ludwig, F. Lecouturier, J.P. Peyrade and S. Askénazy, High-Strength Materials: In-Situ Investigations of Dislocation Behavior in Cu–NbMultifilamentary Nanostructured Composites, Philos. Mag. A., 2002, 82, p 925.

    Article  CAS  Google Scholar 

  32. P.D. Funkenbusch and T.H. Courtney, Microstructural Strengthening in Cold Worked In-Situ Cu–14.8vol.%Fe Composites, Scripta Metall., 1981, 15, p 1349.

    Article  CAS  Google Scholar 

  33. J.S. Song, J.H. Ahn and H.S. Hong, Comparison of Microstructure and Strength in Wire-Drawn and Rolled Cu–9 Fe–1.2 Ag Filamentary Microcomposite, J. Mater. Sci., 2001, 36, p 5881.

    Article  CAS  Google Scholar 

  34. G.A. Jerman, I.E. Anderson and J.D. Verhoeven, Strength and Electrical Conductivity of Deformation-Processed Cu–15 VolPct Fe Alloys Produced by Powder Metallurgy Techniques, Metall. Trans. A., 1993, 24A, p 35.

    Article  CAS  Google Scholar 

  35. J.D. Verhoeven, H.L. Downing, L.S. Chumbley and E.D. Gibson, The Resistivity and Microstructure of Heavily Drawn Cu–Nb Alloys, J. Appl. Phys., 1989, 65, p 1293.

    Article  CAS  Google Scholar 

  36. L. Zhang and L. Meng, Evolution of Microstructure and Electrical Resistivity of Cu–12wt.%Ag Filamentary Microcomposite with Drawing Deformation, Scripta Mater., 2005, 52, p 1187.

    Article  CAS  Google Scholar 

  37. K.R. Karasek and J. Bevk, Normal-State Resistivity of In Situ-Formed Ultrafine Filamentary Cu–Nb Composites, J. Appl. Phys., 1981, 52, p 1370.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Grant No. 50671092), National Key Research and Development Program of China (Grant No. 2020YFB1600100) and Science and Technology Commissioner Project of Tianjin Enterprise (Grant No. 20YDTPJC00580) and Fundamental Research Funds for the Central Universities (Grant No. 3122018C016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Chen, Y., Meng, L. et al. Effect of Fe Content on the Microstructure and Mechanical and Electrical Properties of Cu-Fe In Situ Composites. J. of Materi Eng and Perform 30, 5939–5946 (2021). https://doi.org/10.1007/s11665-021-05579-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05579-6

Keywords

Navigation