Skip to main content
Log in

Experimental Optimization for Fatigue Life Maximization of Additively Manufactured Ti-6Al-4V Alloy Employing Ultrasonic Impact Treatment

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ultrasonic Impact Treatment (UIT) is an effective surface modification method used to increase fatigue life of welding application by inducing compressive residual stresses. In this paper, we extend the application of UIT to include additively manufactured metallic parts with particular focus on Ti-6Al-4V manufactured with Direct Metal Laser Sintering technology. Design optimization for the application parameters of the UIT was conducted with the objective of fatigue life maximization. Application parameters of the UIT included the static pre-stressing force of UIT impact needle against the treatment surface and its scanning speed during application while the scanning pattern is maintained constant. Results show that a static load of 30N and a scanning speed of 2000mm/min can provide an optimal fatigue life increase up to 250% compared to untreated parts. It is shown that the increase in fatigue performance correlates strongly with an increase in the micro-hardness and compressive residual stress and less strongly with surface roughness. Two Stress-Life (S-N) curves are fully characterized experimentally based on a set of samples treated with the determined optimal UIT parameters and another set of untreated versions. Endurance limit of the optimally treated specimens is increased by 25% from about 200-250MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

source (b) ultrasonic generator (c) impact tool (d) impact needle

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

UIT:

Ultrasonic Impact Treatment

AM:

Additively Manufactured

DMLS:

Direct Metal Laser Sintering

UIP:

Ultrasonic Impact Peening

SEM:

Scanning Electron Microscope

LPB:

Low Plasticity Burnishing

UNSM:

Ultrasonic Nanocrystal Surface Modification

HIP:

Hot Isostatic Pressing

TIG:

Tungsten Inert Gas

EDM:

Electro-Discharge Machining

TEM:

Transmission Electron Microscope

References

  1. P. Mercelis and J.-P. Kruth, Residual Stresses in Selective Laser Sintering and Selective Laser Melting, Rapid Prototyp. J., 2006, 12(5), p 254–265.

    Article  Google Scholar 

  2. P. Edwards and M. Ramulu, Fatigue Performance Evaluation of Selective Laser Melted Ti-6Al-4V, Mater. Sci. Eng. A, 2014, 598, p 327–337.

    Article  CAS  Google Scholar 

  3. E.C. Santos, F. Abe, K. Osakada, Y. Kitamura, M. Shiomo, Mechanical Properties of Pure Titanium Models Processed by Selective Laser Melting, Proc Solid Freeform Fabrication Symposium pp. 180-186 (2002).

  4. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff and S.S. Babu, The Metallurgy and Processing Science of Metal Additive Manufacturing, Int. Mater. Rev., 2016, 61(5), p 315–360.

    Article  Google Scholar 

  5. H. Luong and M.R. Hill, The Effects of Laser Peening and Shot Peening on High Cycle Fatigue in 7050–T7451 Aluminum Alloy, Mater. Sci. Eng., A, 2010, 527(3), p 699–707.

    Article  Google Scholar 

  6. B. AlMangour and J.-M. Yang, Improving the surface quality and mechanical properties by shot-peening of 17–4 stainless steel fabricated by additive manufacturing, Mater. Des., 2016, 110, p 914–924.

    Article  CAS  Google Scholar 

  7. K. Zhan, C.H. Jiang and V. Ji, Residual Stress Relaxation of Shot Peened Deformation Surface Layer on S30432 Austenite Steel under Applied Loading, Mater. Trans., 2012, 53(9), p 1578–1581.

    Article  CAS  Google Scholar 

  8. D. Cattoni, C. Ferrari, L. Lebedev, L. Pazos and H. Svoboda, Effect of blasting on the fatigue life of Ti-6Al-7Nb and stainless steel AISI 316 LVM, Proc. Mater. Sci., 2012, 1, p 461–468.

    Article  CAS  Google Scholar 

  9. M. Benedetti, E. Torresani, M. Leoni, V. Fontanari, M. Bandini, C. Pederzolli and C. Potrich, The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting, J. Mech. Behav. Biomed. Mater., 2017, 71, p 295–306.

    Article  CAS  Google Scholar 

  10. P.S. Prevéy and J.T. Cammett, The influence of surface enhancement by low plasticity burnishing on the corrosion fatigue performance of AA7075-T6, Int. J. Fatigue, 2004, 26(9), p 975–982.

    Article  Google Scholar 

  11. P.S. Preve´y, R.A. Ravindranath, M. Shepard, T. Gabb, Case studies of fatigue life improvement using low plasticity burnishing in gas turbine engine applications, pp. 657-665 (2009)

  12. C. Ma, Y. Dong and C. Ye, Improving surface finish of 3D-printed metals by ultrasonic nanocrystal surface modification, Proc. CIRP, 2016, 45, p 319–322.

    Article  Google Scholar 

  13. C. Ma, M.T. Andani, H. Qin, N.S. Moghaddam, H. Ibrahim, A. Jahadakbar, A. Amerinatanzi, Z. Ren, H. Zhang, G.L. Doll, Y. Dong, M. Elahinia and C. Ye, Improving surface finish and wear resistance of additive manufactured nickel-titanium by ultrasonic nano-crystal surface modification, J. Mater. Process. Technol., 2017, 249, p 433–440.

    Article  CAS  Google Scholar 

  14. H. Zhang, R. Chiang, H. Qin, Z. Ren, X. Hou, D. Lin, G.L. Doll, V.K. Vasudevan, Y. Dong and C. Ye, The effects of ultrasonic nanocrystal surface modification on the fatigue performance of 3D-printed Ti64, Int. J. Fatigue, 2017, 103, p 136–146.

    Article  CAS  Google Scholar 

  15. C. Ye, A. Telang, A. Gill, X. Wen, S.R. Mannava, D. Qian and V.K. Vasudevan, Effects of ultrasonic nanocrystal surface modification on the residual stress, microstructure, and corrosion resistance of 304 stainless steel welds, Metall. Mater. Trans. A, 2018, 49(3), p 972–978.

    Article  CAS  Google Scholar 

  16. A.I. Dekhtyar, B.N. Mordyuk, D.G. Savvakin, V.I. Bondarchuk, I.V. Moiseeva and N.I. Khripta, Enhanced fatigue behavior of powder metallurgy Ti–6Al–4V alloy by applying ultrasonic impact treatment, Mater. Sci. Eng. A, 2015, 641, p 348–359.

    Article  CAS  Google Scholar 

  17. H.V. Atkinson and S. Davies, Fundamental aspects of hot isostatic pressing: An overview, Metall. Mater. Trans. A, 2000, 31(12), p 2981–3000.

    Article  Google Scholar 

  18. B.N. Mordyuk and G.I. Prokopenko, Ultrasonic impact peening for the surface properties’ management, J. Sound Vib., 2007, 308(3–5), p 855–866.

    Article  Google Scholar 

  19. Y. Kondo, C. Sakae, M. Kubota and T. Kudou, The effect of material hardness and mean stress on the fatigue limit of steels containing small defects, Fatigue Fract. Eng. Mater. Struct., 2003, 26(8), p 675–682.

    Article  CAS  Google Scholar 

  20. E.S. Statnikov, O.V. Korolkov and V.N. Vityazev, Physics and Mechanism of Ultrasonic Impact, Ultrasonics, 2006, 44, p e533–e508.

    Article  Google Scholar 

  21. C.Y. Seemikeri, P.K. Brahmankar and S.B. Mahagaonkar, Investigations on surface integrity of AISI 1045 using LPB tool, Tribol. Int., 2008, 41(8), p 724–734.

    Article  CAS  Google Scholar 

  22. E.S. Statnikov, V.O. Muktepavel and A. Blomqvist, Comparison of ultrasonic impact treatment (UIT) and other fatigue life improvement methods, Weld. World, 2002, 46(3–4), p 20–32.

    Article  Google Scholar 

  23. Y. Dong, Y. Garbatov and C. Guedes Soares, Fatigue crack initiation assessment of welded joints accounting for residual stress, Fatigue Fract. Eng. Mater. Struct., 2018, 41(8), p 1823–1837.

    Article  Google Scholar 

  24. S. Roy, J.W. Fisher and B.T. Yen, Fatigue resistance of welded details enhanced by ultrasonic impact treatment (UIT), Int. J. Fatigue, 2003, 25(9), p 1239–1247.

    Article  CAS  Google Scholar 

  25. M. Castillo-Morales, T.P. Berber-Solano, A. Salas-Zamarripa, O.J. Zapata-Hernández, J. Hernández-Sandoval, D.F. Ledezma-Ramírez, J.A. Castillo-Elizondo, J.A. Aldaco-Castañeda, Effectiveness of the ultrasonic impact treatment in the retardation of the fatigue crack growth for 2024-T3 Al alloy components, Int. J. Adv. Manuf. Technol. (2020)

  26. P. Walker, S. Malz, E. Trudel, S. Nosir, S.A.M. ElSayed, L. Kok, Effects of ultrasonic impact treatment on the stress-controlled fatigue performance of additively manufactured DMLS Ti-6Al-4V Alloy, Appl. Sci. 9(22) (2019)

  27. A. International, ASTM E466–15 Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, ASTM International, West Conshohocken, PA, 2015.

    Google Scholar 

  28. G. Additive, Ti-6AI-4V Grade 23. https://www.ge.com/additive/additive-manufacturing/materials/apc/ti-6al-4v-23, (2019) (accessed Aug 27.2019)

  29. EOS, EOS M290/400W standard, AD, WEIL, (2014)

  30. HEAT TREATMENT OF TITANIUM ALLOY PARTS, SAE International, (1994)

  31. DTF-40347. http://www.toolingsolutions.com/browse/?lines=DTF&search_page=818&search_results_per_page=15&category=9&view_item=DTF-40347, 2019 (accessed Aug 28.2019)

  32. D. Ultrasonics, 20k1200w ultrasonic portable spot welding machine. http://www.dowellsonic.com/product/20k1200w-ultrasonic-portable-spot-welding-machine.html, 2019 (accessed Aug 28.2019)

  33. M. Carr, https://www.mcmaster.com, 2019 (accessed July 28.2019)

  34. https://intertechnology.com/. Accessed on September 21, 2020, 1800:00 EDT

  35. S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard and H.J. Maier, On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance, Int. J. Fatigue, 2013, 48, p 300–307.

    Article  CAS  Google Scholar 

  36. MTS, MTS 810 & 858 Test Systems. https://www.upc.edu/sct/documents_equipament/d_77_id-412.pdf, 2006 (accessed July 21.2019)

  37. D.I.F.N.E.V.G.N. Standard), DIN 50100: Load controlled fatigue testing - Execution and evaluation of cyclic tests at constant load amplitudes on metallic specimens and components, Berlin, 2016, p. 111.

  38. https://www.amscope.com/. Accessed on September 21, 2020, 1800:00 EDT

  39. Zeiss, ZEISS GeminiSEM https://www.zeiss.com/microscopy/int/products/scanning-electron-microscopes/geminisem.html, 2019 (accessed Aug 18.2019).

  40. A.H.T. PRODUCTS, METPREP 3™ GRINDER/POLISHER WITH POWER HEAD. http://www.alliedhightech.com/Equipment/metprep-3-grinder-polisher-with-powerhead, 2019 (accessed Aug 11.2019)

  41. Sigma-Aldrich, Aluminum oxide. https://www.sigmaaldrich.com/catalog/product/sigald/229423?lang=en&region=CA, 2019 (accessed Aug 8.2019)

  42. A.S.f.T.a. Materials, standard practice for microetching metals and alloys, E 407 – 99, American society for testing and materials, West Conshohocken, PA, (1999)

  43. G. Lütjering , J.C. Williams, Titanium, Engineering materials and processes, Springer, Berlin; New York, 2007, pp. xii, 442 p. ill. 25 cm

  44. V.A. Joshi, Titanium Alloys: An Atlas of Structure an Fracture Features, CRC/Taylor and Francis, Boca Raton, 2006.

    Book  Google Scholar 

  45. B.E. Carroll, T.A. Palmer and A.M. Beese, Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing, Acta Mater., 2015, 87, p 309–320.

    Article  CAS  Google Scholar 

  46. A.A. Antonysamy, J. Meyer and P.B. Prangnell, Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting, Mater. Charact., 2013, 84, p 153–168.

    Article  CAS  Google Scholar 

  47. K.H. Schwalbe, J.C. Newman, S.R. Daniewicz, ASTM Committee E-8 on Fatigue and Fracture., Knovel (Firm), European Structural Integrity Society., Fatigue and fracture mechanics

  48. 34th volume, Stp 1461, ASTM International,, West Conshohocken, PA, 2005, pp. 1 online resource (ix, 609 p.) ill

  49. Buehler, Automatic Vickers/Knoop Hardness Testers. https://www.buehler.com/Brochures/English/Hardness/Wilson_VH3300_low.pdf, 2018 (accessed Aug 21.2019)

  50. Bruker, The Gold Standard in Stylus Profilometry. https://www.bruker.com/products/surface-and-dimensional-analysis/stylus-profilometers/dektak-xt/overview.html, 2019 (accessed Aug 15.2019)

  51. I.V. Zyl, I. Yadroitsava and I. Yadroitsev, Residual stress in TI6AL4V objects produced by direct metal laser sintering, S. Afr. J. Ind. Eng., 2016, 27(4), p 134–141.

    Google Scholar 

  52. G.S. Schajer, C.O. Ruud, Practical Residual Stress Measurement Methods, John Wiley & Sons Ltd2013

  53. R. Corporation, Multipurpose X-ray diffraction system. https://www.rigaku.com/en/products/xrd/ultima, 2019 (accessed July 28.2019)

  54. M.E. Flitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton, L. Suominen, Determination of Residual Stresses by X-ray Diffraction - Issue 2, Measurement Good Practice Guide No. 52 52(2), 1–68 (2005)

  55. Y. Wang, A. Sheng, CRC Press., Manufacturing and engineering technology, pp. 1 online resource text file, PDF

  56. R.C. Zeng, E.H. Han and W. Ke, Effect of temperature and relative humidity on fatigue crack propagation behavior of AZ61 magnesium alloy, Mater. Sci. Forum, 2007, 546–549, p 409–412.

    Article  Google Scholar 

  57. S. Leuders, M. Thone, A. Riemer, T. Niendorf, T. Troster, H.A. Richard and H.J. Maier, On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance, Int. J. Fatigue, 2013, 48, p 300–307.

    Article  CAS  Google Scholar 

  58. C. Qiu, N.J.E. Adkins and M.M. Attallah, Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V, Mater. Sci. Eng. A, 2013, 578, p 230–239.

    Article  CAS  Google Scholar 

  59. D. Novovic, R.C. Dewes, D.K. Aspinwall, W. Voice and P. Bowen, The effect of machined topography and integrity on fatigue life, Int. J. Mach. Tools Manuf, 2004, 44(2–3), p 125–134.

    Article  Google Scholar 

  60. N.A. Alang, N.A. Razak and A.K. Miskam, Effect of surface roughness on fatigue life of notched carbon steel, Int. J. Eng. Technol., 2011, 11(1), p 160–163.

    Google Scholar 

  61. L.E. Murr and D. Kuhlmann-Wilsdorf, Experimental and theoretical observations on the relationship between dislocation cell size, dislocation density, residual hardness, peak pressure and pulse duration in shock-loaded nickel, Acta Metall., 1978, 26(5), p 847–857.

    Article  CAS  Google Scholar 

  62. S.M. Yusuf, Y. Chen, R. Boardman, S. Yang and N. Gao, Investigation on porosity and microhardness of 316L stainless steel fabricated by selective laser melting, Metals, 2017, 2(7), p 12.

    Google Scholar 

  63. M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton, L. Suominen, determination of residual stresses by X-ray diffraction, In: N.P. Laboratory (Ed.) National Physical Laboratory, Teddington, Middlesex, (2005)

  64. D.H. Chung and W.R. Buessem, The Voigt-Reuss-Hill Approximation and Elastic Moduli of Polycrystalline MgO, CaF2, β-ZnS ZnSe, and CdTe, J. Appl. Phys., 1967, 38(6), p 2535–2540.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Professor Mostafa S.A. ElSayed acknowledges the financial support provided by BOMBARDIER Aerospace of Montreal, in collaboration with CARIC National Forum (Grant No. CARIC-CRIAQ MDO-1601_TRL4+) and MITACS Canada (grant number IT07461). The authors would like to extend their acknowledgements to the employees of the machine shop, and Professor Dix of the X-Ray Diffractometry Lab, both at Carleton University for their guidance and patience, the Centre of Photonics Research and Dr. Jeff Ovens at the X-ray Core Facility, both at the University of Ottawa for their training and assistance. We wish also to acknowledge Mr. Leo Kok of Bombardier Aerospace for his continuous support and guidance. No competing financial interests exists between the authors and collaborators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa S. A. ElSayed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trudel, E., Walker, P., Nosir, S. et al. Experimental Optimization for Fatigue Life Maximization of Additively Manufactured Ti-6Al-4V Alloy Employing Ultrasonic Impact Treatment. J. of Materi Eng and Perform 30, 2806–2821 (2021). https://doi.org/10.1007/s11665-021-05576-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05576-9

Keywords

Navigation