Skip to main content
Log in

Microstructural Evolution in the TC17 Titanium Alloy Processed During Laser Stereo Forming

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, the microstructure evolution of TC17 titanium alloy prepared by laser stereo forming (LSF) was investigated. Forged TC17 plate was selected as the base material, and TC17 titanium alloy spherical powder with the size of 50-150 μm was the candidate cladding material. The microstructure in deposited TC17 titanium alloy was consisted of three parts, namely fine grains at the bottom of the deposition area, coarse β columnar crystals at the middle, while coarse β columnar crystals or equiaxed crystals at the top. The microstructure is significantly affected by the thermal cycle history during the LSF process. At different locations of the deposited samples, the composition, morphology, size and volume fraction of the phases in the grains are discrepant, as the metastable β phase and the acicular martensite (α′) structure were obtained at the bottom and in the middle, respectively. Due to thermal cycle during multi-layer deposition, the metastable β phase will gradually evolved into α + β phases. As the subsequent deposition process continued, the temperature in the middle of the deposition area decreased below the transformation point, and α′ is decomposed into α + β. The precipitated α phase gradually grew up under the action of thermal cycle. Meanwhile, the fine secondary α phase precipitated from the metastable β phase, and finally the coarser α lath and inter lath were obtained β structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Guo, D.L. Liu, W. Liang, Y.U. Bo-Liang, C.K. Liu and A.O. Co, Breakage Analysis of Impeller Disk of TC17 Titanium Alloy, Fail. Anal. Prev., 2015, 6(4), p 247–258.

    Google Scholar 

  2. J.Z. Sun, M.Q. Li and H. Li, Deformation Behavior of TC17 Titanium Alloy with Basketweave Microstructure During Isothermal Compression, J. Alloy. Compd., 2018, 730, p 533–543.

    Article  CAS  Google Scholar 

  3. V. Bathula, C. Liu, K. Zweiacker, J. McKeown, J.M.K. Wiezorek (2020) Interface Velocity Dependent Solute Trapping and Phase Selection During Rapid Solidification of Laser Melted Hypo-eutectic Al-11at. %Cu alloy. Acta Mater.; 195:341-357

  4. X. Lin, T.M. Yue, H.O. Yang and W.D. Huang, Solidification Behavior and the Evolution of Phase in Laser Rapid Forming of Graded Ti6Al4V-Rene88DT alloy, Metall. Mater. Trans. A, 2007, 38(1), p 127–137.

    Article  Google Scholar 

  5. X. Zhao, C. Jing, L. Xin and W. Huang, Study on Microstructure and Mechanical Properties of Laser Rapid Forming Inconel 718, Mater. Sci. Eng., A, 2008, 478(1–2), p 119–124.

    Article  Google Scholar 

  6. Y.-J. Liang, X. Cheng and H.-M. Wang, A New Microsegregation Model for Rapid Solidification Multicomponent Alloys and Its Application to Single-Crystal Nickel-Base Superalloys of Laser Rapid Directional Solidification, Acta Mater., 2016, 118, p 17–27.

    Article  CAS  Google Scholar 

  7. A. Jammal, G. Wang, Z. JiaXin, H. Yang, S. Yang, Y. Zhong and Y. Rong, Multi-scale Modelling of Solidification and Microstructure Evolution in Laser-deposition of T15 High Speed Steel, J. Manuf. Processes, 2020, 50, p 24–33.

    Article  Google Scholar 

  8. M. Xia, A. Liu, Z. Hou, N. Li, Z. Chen and H. Ding, Microstructure Growth Behavior and Its Evolution Mechanism During Laser Additive Manufacture of In-situ Reinforced (TiB+TiC)/Ti Composite, J. Alloy. Compd., 2017, 728, p 436–444.

    Article  CAS  Google Scholar 

  9. H. Li, Z. Yang, D. Cai, D. Jia and Y. Zhou, Microstructure Evolution and Mechanical Properties of Selective Laser Melted Bulk-Form Titanium Matrix Nanocomposites with Minor B4C Additions, Mater. Des., 2020, 185, p 108245.

    Article  CAS  Google Scholar 

  10. Z. Sun, X. Ji, W. Zhang, L. Chang, G. Xie, H. Chang and L. Zhou, Microstructure Evolution and High Temperature Resistance of Ti6Al4V/Inconel625 Gradient Coating Fabricated by Laser Melting Deposition, Mater. Des., 2020, 191, p 108644.

    Article  CAS  Google Scholar 

  11. K. Wang, D. Du, G. Liu, Z. Pu, B. Chang and J. Ju, Microstructure and Mechanical Properties of High Chromium Nickel-Based Superalloy Fabricated by Laser Metal Deposition, Mater. Sci. Eng., A, 2020, 780, p 139185.

    Article  CAS  Google Scholar 

  12. B. Pazhanivel, P. Sathiya and G. Sozhan, Ultra-Fine Bimodal (α + β) Microstructure Induced Mechanical Strength and Corrosion Resistance of Ti-6Al-4V Alloy Produced Via Laser Powder Bed Fusion Process, Opt. Laser Technol., 2020, 125, p 106017.

    Article  CAS  Google Scholar 

  13. C. Jing, S. Zhang, X. Lei, H. Yang, L. Xin and W. Huang, Mechanical Properties of Ti-6Al-4V Alloy by Laser Rapid Forming, Rare Metal Mater. Eng., 2007, 36(3), p 475–479.

    Google Scholar 

  14. D.A. Hollander, M.V. Walter, T. Wirtz, R. Sellei, B. Schmidt-Rohlfing, O. Paar and H.J. Erli, Structural, Mechanical and In vitro Characterization of Individually Structured Ti-6Al-4V Produced by Direct Laser Forming, Biomaterials, 2006, 27(7), p 955–963.

    Article  CAS  Google Scholar 

  15. S.P. Harimkar and N.B. Dahotre, Rapid Surface Microstructuring of Porous Alumina Ceramic Using Continuous Wave Nd:YAG Laser, J. Mater. Process. Technol., 2009, 209(10), p 4744–4749.

    Article  CAS  Google Scholar 

  16. L. Costa, R. Vilar, T. Reti and A.M. Deus, Rapid Tooling by Laser Powder Deposition: Process Simulation Using Finite Element Analysis, Acta Mater., 2005, 53(14), p 3987–3999.

    Article  CAS  Google Scholar 

  17. S. Sui, J. Chen, E. Fan, H. Yang, X. Lin and W. Huang, The Influence of Laves Phases on the High-Cycle Fatigue Behavior of Laser Additive Manufactured Inconel 718, Mater. Sci. Eng., A, 2017, 695, p 6–13.

    Article  CAS  Google Scholar 

  18. X. Lu, X. Lin, M. Chiumenti, M. Cervera, J. Li, L. Ma, L. Wei, Y. Hu and W. Huang, Finite Element Analysis and Experimental Validation of the Thermomechanical Behavior in Laser Solid Forming of Ti-6Al-4V, Addit. Manuf., 2018, 21, p 30–40.

    CAS  Google Scholar 

  19. M. Song, X. Lin, F. Liu, H. Yang and W. Huang, The Purification of AISI 420 Stainless Steel in Laser Solid Forming, Mater. Des., 2016, 89, p 1035–1040.

    Article  CAS  Google Scholar 

  20. H. Tan, J. Chen, F. Zhang, X. Lin and W. Huang, Process Analysis for Laser Solid Forming of Thin-Wall Structure, Int. J. Mach. Tools Manuf., 2010, 50(1), p 1.

    Article  Google Scholar 

  21. H. Tan, J. Chen, F. Zhang, X. Lin and W. Huang, Estimation of Laser Solid Forming Process Based on Temperature Measurement, Opt. Laser Technol.., 2010, 42(1), p 47.

    Article  CAS  Google Scholar 

  22. Z. Zhuang, C. Jing, T. Hua, Z. Xiaolin and H. Weidong, Microstructure and Mechanical Properties of Laser Repaired TC4 Titanium Alloy, Rare Metal Mater. Eng., 2017, 46(7), p 1792–1797.

    Article  Google Scholar 

  23. P.A. Kobryn and S.L. Semiatin, Microstructure and Texture Evolution During Solidification Processing of Ti-6Al-4V, J. Mater. Process. Technol., 2003, 135(2), p 330–339.

    Article  CAS  Google Scholar 

  24. M. Kelly and S.L. Kampe, Microstructural Evolution in Laser-Deposited Multilayer Ti-6Al-4V Builds: Part I Microstructural Characterization, Metall. Mater. Trans. A-phys. Metall. Mater. Sci., 2004, 35(6), p 1861–1867.

    Article  Google Scholar 

  25. S. Zhang, L. Xin, C. Jing and W. Huang, Heat-Treated Microstructure and Mechanical Properties of Laser Solid Forming Ti-6Al-4V Alloy, Rare Met., 2009, 24(6), p 7–14.

    Google Scholar 

  26. C.M. Liu, X.J. Tian, H.B. Tang and H.M. Wang, Microstructural Characterization of Laser Melting Deposited Ti–5Al-5Mo-5V-1Cr-1Fe Near β Titanium Alloy, J. Alloy. Compd., 2013, 572(3), p 17–24.

    Article  CAS  Google Scholar 

  27. Y. D. Wang, S. Jiang, F. Sun and H.X. Li, M Sun (2014) Microstructure Evolution of Laser Direct Deposited Ti-5Al-2Sn-2Zr-4Mo-4Cr Titanium Alloy. Materi. Sci. Forum; 789: 436-442

    Article  CAS  Google Scholar 

  28. Y. Zhu, X. Tian, J. Li and H. Wang, Microstructure Evolution and Layer Bands of Laser Melting Deposition Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Titanium Alloy, J. Alloys Compo., 616, 468-474 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks for the research grants supported by the National Natural Science Foundation of China (Grant No.51805002), Project supported by the Research Fund of Key Laboratory of advanced metal material green preparation and surface technology (AHUT), Ministry of Education, China (Grant No.GFST2020KF03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghui Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Li, J., Zhang, Q. et al. Microstructural Evolution in the TC17 Titanium Alloy Processed During Laser Stereo Forming. J. of Materi Eng and Perform 30, 2967–2976 (2021). https://doi.org/10.1007/s11665-021-05550-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05550-5

Keywords

Navigation