Skip to main content
Log in

Preparation and Tribological Properties of Graphene Oxide/Polydopamine-Derived Carbon Films on Silicon Substrate

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, dopamine and graphene oxide (GO) solutions were spin-coated on the silicon wafers to obtain the GO/polydopamine (PDA) films. The carbon films were subsequently fabricated by annealing the GO/PDA films in argon atmosphere. The atomic force microscopy analysis was performed to characterize the morphology and tribological properties of the composite films. The developed carbon films exhibited lower friction coefficient and high adhesion between composite films and substrate as compared to the untreated films, which was attributed to the enhanced hydrophobicity, improved hardness and elastic modulus and chemical bonding of the films with substrate. The findings obtained in this study would lead to an efficient design of the anti-wear nanofilms for the micro-/nanoelectronic mechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Chengzhu, L. Yuchao and C.T. Sie, Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity, Int. J. Mol. Sci., 2018, 19, p 3564.

    Google Scholar 

  2. B. Tiantian, F. Huaqing, J. Jinlong, H. XingXing, Z. Xuan, Y. Hua, W. Zhiqiang, and J. Zhengfeng, Enhance Supercapacitive Performance of MnO2/3D Carbon Nanotubes-Graphene as a Binder-Free Electrode, J. Alloys Compd., 2019, 787, p 759–766.

    Google Scholar 

  3. C. Tiedan, X. Yanqiu, J. Zhengfeng, L. Zhilu, and Z. Haobo, Synthesis, Characterization, and Tribological Behavior of Oleic Acid Capped Craphene Oxide, J. Nanomater., 2014, 2014, p 654145.

    Google Scholar 

  4. J. Zhengfeng, C. Tiedan, W. Jie, N. Junjie, L. Huaiyong, and S. Xin, Synthesis, Characterization and Tribological Properties of Cu/Reduced Graphene Oxide Composites, Tribol. Int., 2015, 88, p 17–24.

    Google Scholar 

  5. W. Denghu, X. Zhijun, W. Jie, S. Yuanwei, Z. Suyuan, L. Wenzhi, and L. Xiaona, A One-Pot Thermal Decomposition of C4H4ZnO6 to ZnO@Carbon Composite for Lithium Storage, J. Alloys Compd., 2017, 714, p 13–19.

    Google Scholar 

  6. X. Guoxin, F. Mattias, and P. Jinshan, Direct Electrochemical Synthesis of Reduced Graphene Oxide (rGO)/copper Composite Films and Their Electrical/Electroactive Properties, ACS. Appl. Mater. Int., 2014, 6, p 7444–7455.

    Google Scholar 

  7. O. Junfei, W. Jinqing, L. Sheng, M. Bo, R. Junfang, W. Honggang, and Y. Shengrong, Tribology Study of Reduced Graphene Oxide Sheets on Silicon Substrate Synthesized Via Covalent Assembly, Langmuir, 2010, 26, p 15830–15836.

    Google Scholar 

  8. O. Junfei, W. Ying, W. Jinqing, L. Sheng, L. Zhangpeng, and Y. Shengrong, Self-Assembly of Octadecyltrichlorosilane on Graphene Oxide and the Tribological Performances of the Resultant Film, J. Phys. Chem. C, 2011, 115, p 10080–10086.

    Google Scholar 

  9. Y. Ming, J. Zhengfeng, W. Denghu, W. Yunxia, P. Xianjuan, Z. Jinming, Z. Ran, and Y. Bo, Tribological Properties of Carbonized Polydopamine/rGO Composite Coatings, Ind. Lubr. Tribol., 2020, 72, p 54–65.

    Google Scholar 

  10. J. Zhengfeng, L. Haoqi, Z. Yao, A.D. Dmitriy, N. Junjie, Z. Limin, Z. Jinming, G. Bo, S. Xin, and R. Fei, Preparation and Electrical Properties of Sintered Copper Powder Compacts Modified by PDA Derived CARBON Nano Films, J. Mater. Sci., 2018, 53, p 6562–6573.

    Google Scholar 

  11. L. Haeshin, M.D. Shara, M.M. William, and B.M. Phillip, Mussel-Inspired Surface Chemistry for Multifunctional Coatings, Science, 2007, 318, p 426–430.

    Google Scholar 

  12. J. Zhengfeng, W. Zhengqi, L. Chao, Z. Limin, N. Junjie, L. Yuchao, S. Xian, and W. Chao, The Synthesis and Tribological Properties of Ag/Polydopamine Nanocomposites as Additives in Poly-Alpha-Olefin, Tribol. Int., 2017, 114, p 282–289.

    Google Scholar 

  13. W. Shuangshuang, M. Han, L. Yuchao, S. Da, Z. Yanhu, G. Xiangcai, and C. Lin, Polymer Brushes Grafted from Graphene via Bioinspired Polydopamine Chemistry and Activators Regenerated by Electron Transfer Atom Transfer Radical Polymerization, J. Polym. Sci. Part A Polym. Chem., 2019, 57, p 689–698.

    Google Scholar 

  14. W. Shuangshuang, S. Jixuan, L. Yuchao, Z. Xingchuan, C. Lin, L. Guang, W. Liping, J. Zhengfeng, and G. Xiangcai, Grafting Antibacterial Polymer Brushes from Titanium Surface via Polydopamine Chemistry and Activators Regenerated by Electron Transfer ATRP, React. Funct. Polym., 2019, 140, p 48–55.

    Google Scholar 

  15. O. Junfei, L. Lei, W. Jinqing, W. Fajun, X. Mingshan, and L. Wen, Fabrication and Tribological Investigation of a Novel Hydrophobic Polydopamine/Graphene Oxide Multilayer Film, Tribol. Lett., 2012, 48, p 407–415.

    Google Scholar 

  16. S. Shiyong, L. Lei, and Z. Junyan, Annealing Improves Tribological Property of Poly(octadecene-alt-maleic anhydride) Self-assembled Film, Appl. Surf. Sci., 2011, 257, p 10254–10260.

    Google Scholar 

  17. Y. Ming, J. Zhengfeng, P. Xianjuan, S. Xin, Z. Jinming, Z. Ran, N. Junjie, J. Jinlong, and Y. Bo, The Synthesis and Tribological Properties of Carbonized Polydopamine/Ag Composite Films, J. Mater. Eng. Perform, 2019, 28, p 7213–7226.

    Google Scholar 

  18. W. Huabin and L.G. Michelle, AFM Lateral Force Calibration for an Integrated Probe using a Calibration Grating, Ultramicroscopy, 2014, 136, p 193–200.

    Google Scholar 

  19. L. Wenhua, B. Keith, and G. Martin, Easy and Direct Method for Calibrating Atomic Force Microscopy Lateral Force Measurements, Rev. Sci. Instrum., 2007, 78, p 063707.

    Google Scholar 

  20. H. Lifang, W. Jinqing, H. Kaiming, and Y. Shengrong, Robust Ultralow Friction Between Graphene and Octadecyltrichlorosilane Self-assembled Monolayers, Appl. Surf. Sci, 2019, 475, p 389–396.

    Google Scholar 

  21. L. Yuchao, W. Ziyue, Z. Yanhu, W. Shuangshuang, T. Xuquan, L. Chengzhu, and L. Zhouguang, Improved Mechanical and Dielectric Performances of Epoxy Nanocomposites Filled with Aminated Polyethylene Glycol Grafted Graphene, Mater. Lett., 2019, 246, p 149–152.

    Google Scholar 

  22. Z. Xingzhong, P. Yitian, and L. Haojie, A Novel Approach to Decrease Friction of Graphene, Carbon, 2017, 118, p 233–240.

    Google Scholar 

  23. L. Changgu, L. Qunyang, K. William, L. Xin-Zhou, B. Helmuth, W.C. Robert, and H. James, Frictional Characteristics of Atomically Thin Sheets, Science, 2010, 328, p 76–80.

    Google Scholar 

  24. L. Quanyang, L. Changgu, R.W. Robert, and H. James, Substrate Effect on Thickness-Dependent Friction on Graphene, Phys. Status Solidi B Basic Solid State Phys., 2010, 247, p 2909–2914.

    Google Scholar 

  25. G.M. Katerina, D. Peyman, S. Caroline, J.V. Shraddha, D.F. Tanner, and B.M. Phillip, Mechanical Enhancement of Bioinspired Polydopamine Nanocoatings, ACS. Appl. Mater. Interfaces, 2019, 11, p 43599–43607.

    Google Scholar 

  26. J. Zhengfeng, L. Haoqi, Z. Yao, F. Laszlo, Q. Bosen, B. Eric, R. Fei, and A.D. Dmitriy, Electrical and Mechanical Properties of Poly(DA)-Modified Copper/Reduced Graphene Oxide Composites, J. Mater. Sci., 2017, 52, p 11620–11629.

    Google Scholar 

  27. L. Haibo, K. Wenjun, W. Lei, Y. Qiaoli, X. Shuling, W. Huaisheng, and L. Jifeng, Synthesis of Three-Dimensional Flowerlike Nitrogen-Doped Carbons by a Copyrolysis Route and the Effect of Nitrogen Species on the Electrocatalytic Activity in Oxygen Reduction Reaction, Carbon, 2013, 54, p 249–257.

    Google Scholar 

  28. K. Kulathuraan, K. Mohanraj, and B. Natarajan, Structural, Optical and Electrical Characterization of Nanostructured Porous Silicon: Effect of Current Density, Spectrochima. Acta A, 2016, 152, p 51–57.

    CAS  Google Scholar 

  29. Z. Hongxiu, G. Miao, and W. Xinze, Ultraprecision Grinding of Silicon Wafers using a Newly Developed Diamond Wheel, Mater. Sci. Semicond. Proc., 2017, 68, p 238–244.

    Google Scholar 

  30. Z. Yu, G. Huajun, Y. Yang, W. Zhixing, L. Xinhai, and Z. Rong, Introducing Reduced Graphene Oxide to Improve the Electrochemical Performance of Silicon-Based Materials Encapsulated by Carbonized Polydopamine Layer for Lithium Ion Batteries, Mater. Lett., 2017, 195, p 164–167.

    Google Scholar 

  31. W. Denghu, Z. Suyuan, L. Haibo, L. Xiaona, L. Jianwen, and Q. Yitai, Multiphase Ge-based Ge/FeGe/FeGe2/C Composite Anode for High Performance Lithium Ion Batteries, Electrochim. Acta, 2017, 253, p 522–529.

    Google Scholar 

  32. Z. Kairuo, C. Changlun, L. Songhua, Z. Xiaodong, A. Ahmed, and H. Tasawar, MOFs-Induced Encapsulation of Ultrafine Ni Nanoparticles into 3D N-Doped Graphene-CNT Frameworks as a Recyclable Catalyst for Cr(VI) Reduction with Formic Acid, Carbon, 2019, 148, p 52–63.

    Google Scholar 

  33. L. JiSun, S. MinSeon, and L. SungMan, Electrochemical Properties of Polydopamine Coated Ti-Si Alloy Anodes for Li-Ion Batteries, Electrochim. Acta, 2016, 222, p 1200–1209.

    Google Scholar 

  34. L. Xin, S. Changwei, W. Jun, and W. Yingde, High-Temperature Microstructural Evolution of SiCN Fibers Derived from Polycarbosilane with Different C/N Ratios, J. Eur. Ceram. Soc., 2020, 40, p 622–629.

    Google Scholar 

  35. B.K.J. Daniel, T.T. Ngon, J.G. Karen, A.O. Joshua, C.W. Joseph, J. Cherno, A.F. Daniel, and L.L. Joseph, Synthesis and Characterization of Aminopropyltriethoxysilane Polydopamine Coatings, Langmuir, 2016, 32, p 4370–4381.

    Google Scholar 

  36. M. Nutthanun and W. Shuichi, Deposition and Tribological Properties of Sulfur-Doped DLC Films Deposited by PBII Method, Adv. Mater. Sci. Eng., 2010 https://doi.org/10.1155/2010/958581

    Article  Google Scholar 

  37. S. Jeongmin, S.C. Won, and K. TaekSoo, Adhesion Improvement of Graphene/Copper Interface using UV/Ozone Treatments, Thin Solid Films, 2015, 584, p 170–175.

    Google Scholar 

  38. V. Proks, J. Brus, O. PopGeorgievski, E. Vecernikova, W. Wisniewski, J. Kotek, M. Urbanova, and F. Rypacek, Thermal-Induced Transformation of Polydopamine Structures: An Efficient Route for the Stabilization of the Polydopamine Surfaces, Macromol. Chem. Phys., 2013, 214, p 499–507.

    CAS  Google Scholar 

  39. T. Yongqi, M. Fuliang, T. Mouyong, J. Zhengfeng, and Z. Zhixiang, Designed Fabrication of Super High Hardness Ni-B-Sc Nanocomposite Coating for Anti-wear Application, Appl. Surf. Sci., 2019, 492, p 426–434.

    Google Scholar 

  40. W. Zhenxing, J. Xu, C. Xiquan, H.L. Cher, and S. Lu, Mussel-Inspired Hybrid Coatings that Transform Membrane Hydrophobicity into High Hydrophilicity and Underwater Superoleophobicity for Oil-in-Water Emulsion Separation, ACS Appl. Mater. Interfaces, 2015, 7, p 9534–9545.

    Google Scholar 

  41. C. Jianfeng, Z. Jiangtao, H. Mingjin, Z. Zhiqiang, and W.X. Kaidong, Preparation of Ni/Graphene Hydrophobic Composite Coating with Micronano Binary Structure by Poly-Dopamine Modification, Surf. Coat. Technol., 2018, 353, p 1–7.

    Google Scholar 

  42. C. Jianfeng, W. Qi, L. Mingxing, M. Jingwen, Y. Yuefen, and L. Xiaobing, Polydopamine as Reinforcement in the Coating of Nano-silver on Polyurethane Surface: Performance and Mechanisms, Prog. Org. Coat., 2019, 137, p 105288.

    Google Scholar 

  43. L. Yuchao, L. Wenzhi, C. Zhonghua, H. Yan, L. Huimin, L. Huixin, and L. Yaozu, Improved CO2 Uptake and Supercapacitive Energy Storage Using Heteroatom-Rich Porous Carbons Derived from Conjugated Microporous Polyaminoanthraquinone Networks, Chem. NanoMat., 2020, 6, p 58–63.

    Google Scholar 

Download references

Acknowledgments

The authors thank the support of Project of Natural Science Foundation of China (No. 51905247, 51775282), Innovation Team of Higher Educational Science and Technology Program in Shandong Province (No. 2019KJA025), and Shan Dong Province Nature Science Foundation (ZR2019MEE018; ZR2020ME133). The authors would like to express their gratitude to EditSprings (https://www.editsprings.com/) for the expert linguistic services provided.

Author information

Authors and Affiliations

Authors

Contributions

ZJ and CZ contributed to conceptualization and manuscript ; WL and CS contributed to methodology; MY and JZ contributed to software; JJ and RZ were involved in the formal analysis and data curation.

Corresponding authors

Correspondence to Zhengfeng Jia or Jinlong Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, C., Yang, M., Jia, Z. et al. Preparation and Tribological Properties of Graphene Oxide/Polydopamine-Derived Carbon Films on Silicon Substrate. J. of Materi Eng and Perform 30, 2462–2472 (2021). https://doi.org/10.1007/s11665-021-05544-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05544-3

Keywords

Navigation