Skip to main content

Advertisement

Log in

Densification, Microstructure Evolution, and Mechanical Properties of Low-Temperature-Sintered 90W-4.9Ni-2.1Fe-3Cu Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, a 90W-4.9Ni-2.1Fe-3Cu alloy was developed for low-temperature sintering. Conventional 90W-7Ni-3Fe alloy, which is typically manufactured at 1500 °C, was synthesized at the same sintering conditions for comparison. In the low-temperature range from 1250 to 1400 °C, sintering densification, microstructure evolution, and mechanical properties were systematically investigated. For the 90W-4.9Ni-2.1Fe-3Cu alloy, a rapid specimen densification occurs at 1350 °C due to liquid formation over the temperature range from 1328 to 1370 °C. The maximum relative density of 99.01% of the alloy is reached at 1400 °C. According to electron probe microanalysis (EPMA) and transmission electron microscopy (TEM), the alloy is composed of a W phase and a γ-(Ni, Fe, Cu) matrix phase, which is well bonded with W grains. The orientation relationship of these two phases can be described as [001] γ-(Ni, Fe, Cu)∥[\(\bar{1}\)33]W. The tensile strength and hardness of the sintered alloy increase with increasing sintering temperature. At 1400 °C, the tensile strength of the 90W-4.9Ni-2.1Fe-3Cu alloy is with 874 MPa considerably higher than that of the 90W-7Ni-3Fe alloy (385 MPa). The formation mechanism of γ-(Ni, Fe, Cu) phase is included in the discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. R.M. German, P. Suri and S.J. Park, Review: Liquid Phase Sintering, J. Mater. Sci., 2009, 44, p 1–39.

    Article  CAS  Google Scholar 

  2. R. Gero, L. Borukhin and I. Pikus, Some Structural Effects of Plastic Deformation on Tungsten Heavy Metal Alloys, Mater. Sci. Eng. A, 2001, 302, p 162–167.

    Article  Google Scholar 

  3. M. Bahgat, M.K. Paek and J.J. Pak, Reduction Investigation of WO3/NiO/Fe2O3 and Synthesis of Nanocrystalline Ternary W–Ni–Fe Alloy, J. Alloys Compd., 2009, 472, p 314–318.

    Article  CAS  Google Scholar 

  4. C. Lu, Y. Wang, X. Lei et al., Influence of Fe–W Intermetallic Compound on Fracture Behavior of Steel/Tungsten HIP Diffusion Bonding Joint: Experimental Investigation and First-Principles Calculation, J. Manuf. Process., 2020, 55, p 131–142.

    Article  Google Scholar 

  5. D. Qu, Z. Zhou, J. Tan and J. Aktaa, Characterization of W/Fe Functionally Graded Materials Manufactured by Resistance Sintering Under Ultra-High Pressure, Fusion Eng. Des, 2015, 91, p 21–24.

    Article  CAS  Google Scholar 

  6. N. Kang, J.L. Lu, Q.G. Li et al., A New Way to Net-Shaped Synthesis Tungsten Steel by Selective Laser Melting and Hot Isostatic Pressing, Vacuum, 2020, 179, p 109557.

    Article  CAS  Google Scholar 

  7. S. Heuer, J. Matĕjček, M. Vilémová et al., Atmospheric Plasma Spraying of Functionally Graded Steel/Tungsten Layers for the First Wall of Future Fusion Reactors, Surf. Coat. Technol, 2019, 366, p 170–178.

    Article  CAS  Google Scholar 

  8. W. Zhu, W. Liu, Q. Cai et al., The Study on Low Temperature Sintering of a W–Ni–Cu–Sn Heavy Alloy, Mater. Res. Express, 2018, 6, p 016535.

    Article  Google Scholar 

  9. W. Liu, L. Zhang, Y. Ma et al., Low Temperature Co-sintering of Tungsten Alloy/Steel Composite Structure, Int. J. Refract. Met. Hard Mater., 2020, 90, p 105224.

    Article  CAS  Google Scholar 

  10. A. Mondal, A. Upadhyaya and D. Agrawal, Effect of Heating Mode and Sintering Temperature on the Consolidation of 90W–7Ni–3Fe Alloys, J. Alloys Compd., 2011, 509, p 301–310.

    Article  CAS  Google Scholar 

  11. H. Liu, S. Cao, J. Zhu et al., Densification, Microstructure and Mechanical Properties of 90W–4Ni–6Mn Heavy Alloy, Int. J. Refract. Met. Hard Mater, 2013, 37, p 121–126.

    Article  Google Scholar 

  12. V.I. Nizhenko and V.V. Skorokhod, Compaction Kinetics with Liquid-Phase Sintering of W–Ni–Sn Pseudoalloys, Powder Metall. Met. Ceram, 2004, 43, p 364–370.

    Article  CAS  Google Scholar 

  13. V.I. Nizhenko, V.Y. Petrishchev and V.V. Skorokhod, Effect of Liquid Phase on W-Ni–Sn and W–Co–Sn Pseudoalloys in Liquid–Phase Sintering, Powder Metall. Met. Ceram, 2007, 46, p 105–110.

    Article  CAS  Google Scholar 

  14. R.M. German, Lower Sintering Temperature Tungsten Alloys for Space Research, Int. J. Refract. Met. Hard Mater, 2015, 53, p 74–79.

    Article  CAS  Google Scholar 

  15. P. Haasen and J.M. Galligan, Physical Metallurgy, Phys. Today, 1978, 31, p 51–52.

    Article  Google Scholar 

  16. A.A. Nayeb-Hashmi and J.B. Clark, Binary Alloy Phase Diagrams, 2nd ed. ASM International, Materials Park, OH, 1991.

    Google Scholar 

  17. E. Abbasi and K. Dehghani, Phase Prediction and Microstructure of Centrifugally Cast Non-equiatomic Co–Cr–Fe–Mn–Ni (Nb, C) High Entropy Alloys, J. Alloys Compd., 2019, 783, p 292–299.

    Article  CAS  Google Scholar 

  18. M. Detrois, P.D. Jablonski, S. Antonov et al., Design and Thermomechanical Properties of a γ′ Precipitate-Strengthened Ni-Based Superalloy with High Entropy γ Matrix, J. Alloys Compd., 2019, 792, p 550–560.

    Article  CAS  Google Scholar 

  19. M.P. Miles, T.W. Nelson, C. Gunter et al., Predicting Recrystallized Grain Size in Friction Stir Processed 304L Stainless Steel, J. Mater. Sci. Technol., 2019, 35, p 29–36.

    Article  Google Scholar 

  20. R.M. German, Liquid Phase Sintering, Plenum Press, New York, 1985.

    Book  Google Scholar 

  21. W.A. Badawy, K.M. Ismail and A.M. Fathi, Effect of Ni Content on the Corrosion Behavior of Cu–Ni Alloys in Neutral Chloride Solutions, Electrochim. Acta, 2005, 50, p 3603–3608.

    Article  CAS  Google Scholar 

  22. R. Haugsrud, T. Norby and P. Kofstad, High-Temperature Oxidation of Cu–30 wt.% Ni–15 wt.% Fe, Corros. Sci., 2001, 43, p 283–299.

    Article  CAS  Google Scholar 

  23. H.X. Li, X.J. Hao, G. Zhao et al., Characteristics of the Continuous Coarsening and Discontinuous Coarsening of Spinodally Decomposed Cu–Ni–Fe Alloy, J. Mater. Sci, 2001, 36, p 779–784.

    Article  CAS  Google Scholar 

  24. Q. Zhou, J. Jiang, Q. Zhong et al., Preparation of Cu–Ni–Fe Alloy Coating and Its Evaluation on Corrosion Behavior in 3.5% NaCl Solution, J. Alloys Compd., 2013, 563, p 171–175.

    Article  CAS  Google Scholar 

  25. H.V.M. Lopez, T. Sakurai, K. Hirano et al., A Study of Phase Decomposition in CuNiFe Alloys, Acta Metall. Mater, 1993, 41, p 265–271.

    Article  CAS  Google Scholar 

  26. E.O. Avila-Davila, D.V. Melo-Maximo, V.M. Lopez-Hirata et al., Microstructural Simulation in Spinodally-Decomposed Cu-70 at.% Ni and Cu–46 at.%Ni–4at.% Fe Alloys, Mater. Charact, 2009, 60, p 560–567.

    Article  CAS  Google Scholar 

  27. F. Findik, Improvements in Spinodal Alloys from Past to Present, Mater. Des., 2012, 42, p 131–146.

    Article  CAS  Google Scholar 

  28. B.H. Xiong, J.A. Wang, Y.C. Chen et al., Spinodal Decomposition of Ni-32.7at%Cu Alloy and Its Effect on Recrystallization Texture, Heat Treatment Metals, 2018, 43, p 53–59.

    Google Scholar 

  29. J. Das, U.R. Kiran, A. Chakraborty et al., Hardness and Tensile Properties of Tungsten Based Heavy Alloys Prepared by Liquid Phase Sintering Technique, Int. J. Refract. Met. Hard Mater, 2009, 27, p 577–583.

    Article  CAS  Google Scholar 

  30. D.P. Xiang, L. Ding, Y.Y. Li et al., Microstructure and Mechanical Properties of Fine-Grained W-7Ni-3Fe Heavy Alloy by Spark Plasma Sintering, Mater. Sci. Eng. A, 2012, 551, p 95–99.

    Article  CAS  Google Scholar 

  31. K.S. Churn and R.M. German, Fracture Behavior of W-Ni-Fe Heavy Alloys, Metall. Mater. Trans. A, 1984, 15, p 331–338.

    Article  Google Scholar 

  32. R.L. Woodward and R.G. O’Donnell, Tensile Rupture of Tungsten Alloys by the Cascade of Crack Nucleation Events, J. Mater. Sci., 2000, 35, p 4067–4072.

    Article  CAS  Google Scholar 

  33. U.R. Kiran et al., Tensile and Impact Behavior of Swaged Tungsten Heavy Alloys Processed by Liquid Phase Sintering, Int. J. Refract. Met. Hard Mater., 2013, 37, p 1–11.

    Article  CAS  Google Scholar 

  34. J. Das, G.A. Rao, S.K. Pabi et al., Thermo-Mechanical Processing, Microstructure and Tensile Properties of a Tungsten Heavy Alloy, Mater. Sci. Eng. A, 2014, 613, p 48–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51701242, 51931012), and the Natural Science Foundation of Hunan Province of China (Grant No. 2018JJ3648).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wensheng Liu, Yunzhu Ma or Qingshan Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Liu, W., Ma, Y. et al. Densification, Microstructure Evolution, and Mechanical Properties of Low-Temperature-Sintered 90W-4.9Ni-2.1Fe-3Cu Alloy. J. of Materi Eng and Perform 30, 2761–2771 (2021). https://doi.org/10.1007/s11665-021-05539-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05539-0

Keywords

Navigation