Skip to main content
Log in

Influence of WC Particle on the Metallurgical, Mechanical, and Corrosion Behavior of AlFeCuCrCoNi-WCx High-Entropy Alloy Coatings

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The high-entropy alloy AlFeCuCrCoNi-WCx (x = 5, 10, and 15 wt.%) multi-principal element claddings were synthesized with the aid of laser-assisted cladding process on AISI 316 steel substrate. The microstructural behavior was characterized by optical microscopy, field emission scanning electron microscope equipped with energy dispersive spectroscopy (FESEM/EDS). The phase analysis using XRD revealed that in addition to the combination of two FCC + BCC phases, a set of diffraction peaks corresponding to WC and Cr23C6 phases is observed. The observation indicates that the cladding zone is mainly consisting of fine-grained nondirectional and equiaxed crystals away from the base material and columnar grains near to the base material. Microstructural observations also conclude that increasing WC leads to refinement in the grain size. The formation of chromium carbide is limited to the AlFeCuCrCoNi-WC10 AlFeCuCrCoNi-WC15 high-entropy alloy coatings due to insufficient carbon content in AlFeCuCrCoNi-WC5 high-entropy alloy coatings to form chromium carbide. As compared to the substrate AISI 316 (164.5 HV0.5), the microhardness of the AlFeCuCrCoNi-WC5, AlFeCuCrCoNi-WC10 and AlFeCuCrCoNi-WC15 claddings is enhanced by approximately 49.6%, 73.5% and 79.7%, respectively. The corrosion resistance of the AlFeCuCrCoNi-WCx multi-principal element coating in 3.5 wt.% NaCl corrosive environment is better than that of the substrate AISI 316. However, the corrosion rate of the high-entropy alloy coating increases and corrosion resistance is deteriorated with the rise in WC content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Dong, Y. Sun, and T. Bell, Enhanced Corrosion Resistance of Duplex Coatings, Surf. Coat. Technol., 1997, 90(1–2), p 91–101. https://doi.org/10.1016/S0257-8972(96)03099-X

    Article  CAS  Google Scholar 

  2. J.H. Zhao, X.L. Ji, Y.P. Shan, Y. Fu, and Z. Yao, On the Microstructure and Erosion-Corrosion Resistance of AlCrFeCoNiCu High-Entropy Alloy via Annealing Treatment, Mater. Sci. Technol. (U. K.), 2016, 32(12), p 1271–1275. https://doi.org/10.1080/02670836.2015.1116494

    Article  CAS  Google Scholar 

  3. J. Mehta, V.K. Mittal, and P. Gupta, Role of Thermal Spray Coatings on Wear, Erosion and Corrosion Behavior: A Review, J. Appl. Sci. Eng., 2017, 20(4), p 445–452. https://doi.org/10.6180/jase.2017.20.4.05

    Article  Google Scholar 

  4. O.S. Fatoba, P.A.I. Popoola, S.L. Pityana, and O.S. Adesina, Computational Dynamics of Anti-corrosion Performance of Laser Alloyed Metallic Materials, Fiber Laser, 2016 https://doi.org/10.5772/62334

    Article  Google Scholar 

  5. H. Zhang, Y. Pan, Y. He, and H. Jiao, Microstructure and Properties of 6FeNiCoSiCrAlTi High-Entropy Alloy Coating Prepared by Laser Cladding, Appl. Surf. Sci., 2011, 257(6), p 2259–2263. https://doi.org/10.1016/j.apsusc.2010.09.084

    Article  CAS  Google Scholar 

  6. S. Sun, Y. Durandet,and M. Brandt, Parametric Investigation of Pulsed Nd: YAG Laser Cladding of Stellite 6 on Stainless Steel, Surf. Coat. Technol., 2005, 194(2–3), p 225–231. https://doi.org/10.1016/j.surfcoat.2004.03.058

    Article  CAS  Google Scholar 

  7. J.B. Cheng, X.B. Liang, Z.H. Wang, and B.S. Xu, Formation and Mechanical Properties of Conicufecr High-Entropy Alloys Coatings Prepared by Plasma Transferred Arc Cladding Process, Plasma Chem. Plasma Process., 2013, 33(5), p 979–992. https://doi.org/10.1007/s11090-013-9469-1

    Article  CAS  Google Scholar 

  8. T.K. Chen, T.T. Shun, J.W. Yeh, and M.S. Wong, Nanostructured Nitride Films of Multi-Element High-Entropy Alloys by Reactive DC Sputtering, Surf. Coat. Technol., 2004, 188–189, p 193–200. https://doi.org/10.1016/j.surfcoat.2004.08.023

    Article  CAS  Google Scholar 

  9. Y. Guo, X. Shang, and Q. Liu, Microstructure and Properties of In-Situ TiN Reinforced Laser Cladding CoCr2FeNiTix High-Entropy Alloy Composite Coatings, Surf. Coat. Technol., 2018, 344, p 353–358. https://doi.org/10.1016/j.surfcoat.2018.03.035

    Article  CAS  Google Scholar 

  10. C. Ni, Y. Shi, J. Liu, and G. Huang, Characterization of Al0.5FeCu0.7NiCoCr High-Entropy Alloy Coating on Aluminum Alloy by Laser Cladding, Opt. Laser Technol., 2018, 105, p 257–263. https://doi.org/10.1016/j.optlastec.2018.01.058

    Article  CAS  Google Scholar 

  11. X. Wu Qiu, M. Jun Wu, C. Ge Liu, Y. Peng Zhang, and C. Xiang Huang, Corrosion Performance of Al2CrFeCoxCuNiTi High-Entropy Alloy Coatings in Acid Liquids, J. Alloys Compd., 2017, 708, p 353–357. https://doi.org/10.1016/j.jallcom.2017.03.054

    Article  CAS  Google Scholar 

  12. F. Shu, B. Yang, S. Dong, H. Zhao, B. Xu, F. Xu, B. Liu, P. He, and J. Feng, Effects of Fe-to-Co Ratio on Microstructure and Mechanical Properties of Laser Cladded FeCoCrBNiSi High-Entropy Alloy Coatings, Appl. Surf. Sci., 2018, 450, p 538–544. https://doi.org/10.1016/j.apsusc.2018.03.128

    Article  CAS  Google Scholar 

  13. C.L. Wu, S. Zhang, C.H. Zhang, H. Zhang, and S.Y. Dong, Phase Evolution and Cavitation Erosion-Corrosion Behavior of FeCoCrAlNiTixhigh Entropy Alloy Coatings on 304 Stainless Steel by Laser Surface Alloying, J. Alloys Compd., 2017, 698, p 761–770. https://doi.org/10.1016/j.jallcom.2016.12.196

    Article  CAS  Google Scholar 

  14. W.L. Hsu, Y.C. Yang, C.Y. Chen, and J.W. Yeh, Thermal Sprayed High-Entropy NiCo0.6Fe0.2Cr1.5SiAlTi0.2 Coating with Improved Mechanical Properties and Oxidation Resistance, Intermetallics, 2017, 89(May), p 105–110. https://doi.org/10.1016/j.intermet.2017.05.015

    Article  CAS  Google Scholar 

  15. C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, and S.Y. Chang, Mechanical Performance of the AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2005, 36(5), p 1263–1271. https://doi.org/10.1007/s11661-005-0218-9

    Article  Google Scholar 

  16. Y. Zhang, T. Zuo, Y. Cheng, and P.K. Liaw, High-Entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability, Sci. Rep., 2013, 3, p 1–7.

    Google Scholar 

  17. S. Varalakshmi, G. Appa Rao, M. Kamaraj, and B.S. Murty, Hot Consolidation and Mechanical Properties of Nanocrystalline Equiatomic AlFeTiCrZnCu High Entropy Alloy after Mechanical Alloying, J. Mater. Sci., 2010, 45(19), p 5158–5163. https://doi.org/10.1007/s10853-010-4246-5

    Article  CAS  Google Scholar 

  18. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, and Q.J. Zhang, Annealing on the Structure and Properties Evolution of the CoCrFeNiCuAl High-Entropy Alloy, J. Alloys Compd., 2010, 502(2), p 295–299. https://doi.org/10.1016/j.jallcom.2009.11.104

    Article  CAS  Google Scholar 

  19. Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, and H.Z. Fu, Microstructure and Compressive Properties of AlCrFeCoNi High Entropy Alloy, Mater. Sci. Eng. A, 2008, 491(1–2), p 154–158. https://doi.org/10.1016/j.msea.2008.01.064

    Article  CAS  Google Scholar 

  20. Q. Chao, T. Guo, T. Jarvis, X. Wu, P. Hodgson, and D. Fabijanic, Direct Laser Deposition Cladding of AlxCoCrFeNi High Entropy Alloys on a High-Temperature Stainless Steel, Surf. Coat. Technol., 2017, 332(May), p 440–451. https://doi.org/10.1016/j.surfcoat.2017.09.072

    Article  CAS  Google Scholar 

  21. Y. Peng, W. Zhang, T. Li, M. Zhang, B. Liu, Y. Liu, L. Wang, and S. Hu, Effect of WC Content on Microstructures and Mechanical Properties of FeCoCrNi High-Entropy Alloy/WC Composite Coatings by Plasma Cladding, Surf. Coat. Technol., 2020, 385, p 125326. https://doi.org/10.1016/j.surfcoat.2019.125326

    Article  CAS  Google Scholar 

  22. S. Zhu, Y. Yu, B. Zhang, Z. Zhang, X. Yan, and Z. Wang, Microstructure and Wear Behaviour of In-Situ TiN-Al2O3 Reinforced CoCrFeNiMn High-Entropy Alloys Composite Coatings Fabricated by Plasma Cladding, Mater. Lett., 2020, 272, p 127870. https://doi.org/10.1016/j.matlet.2020.127870

    Article  CAS  Google Scholar 

  23. I.L. Velo, F.J. Gotor, M.D. Alcalá, C. Real, and J.M. Córdoba, Fabrication and Characterization of WC-HEA Cemented Carbide Based on the CoCrFeNiMn High Entropy Alloy, J. Alloys Compd., 2018, 746, p 1–8. https://doi.org/10.1016/j.jallcom.2018.02.292

    Article  CAS  Google Scholar 

  24. X.W. Qui, Microstructure and Properties of AlCrFeNiCoCu High Entropy Alloy Prepared by Powder Metallurgy, J. Alloys Compd., 2013, 555, p 246–249. https://doi.org/10.1016/j.jallcom.2012.12.071

    Article  CAS  Google Scholar 

  25. P.K. Rai, S. Shekhar, K. Yagi, K. Ameyama, and K. Mondal, Corrosion Behavior of Harmonic Structured 316L Stainless Steel in 3.5% NaCl and Simulated Body Fluid Solution, J. Mater. Eng. Perform., 2019, 28(12), p 7554–7564. https://doi.org/10.1007/s11665-019-04428-x

    Article  CAS  Google Scholar 

  26. Y.B. Peng, W. Zhang, X.L. Mei, H.J. Wang, M.Y. Zhang, L. Wang, X.F. Li, and Y. Hu, Microstructures and Mechanical Properties of FeCoCrNi-Mo High Entropy Alloys Prepared by Spark Plasma Sintering and Vacuum Hot-Pressed Sintering, Mater. Today Commun., 2020, 24, p 101009. https://doi.org/10.1016/j.mtcomm.2020.101009

    Article  CAS  Google Scholar 

  27. D. Tanigawa, N. Abe, M. Tsukamoto, Y. Hayashi, H. Yamazaki, Y. Tatsumi, and M. Yoneyama, Effect of Laser Path Overlap on Surface Roughness and Hardness of Layer in Laser Cladding, Sci. Technol. Weld. Join., 2015, 20(7), p 601–606. https://doi.org/10.1179/1362171815Y.0000000044

    Article  CAS  Google Scholar 

  28. C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, and S.Y. Chang, Microstructure Characterization of AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2005, 36(4), p 881–893. https://doi.org/10.1007/252Fs11661-005-0283-0

    Article  Google Scholar 

  29. R. Sriharitha, B.S. Murty, and R.S. Kottada, Phase Formation in Mechanically Alloyed Al XCoCrCuFeNi (x = 0.45, 1, 2.5, 5 Mol) High Entropy Alloys, Intermetallics, 2013, 32, p 119–126. https://doi.org/10.1016/j.intermet.2012.08.015

    Article  CAS  Google Scholar 

  30. Y.B. Peng, W. Zhang, T.C. Li, M.Y. Zhang, L. Wang, Y. Song, S.H. Hu, and Y. Hu, Microstructures and Mechanical Properties of FeCoCrNi High Entropy Alloy/WC Reinforcing Particles Composite Coatings Prepared by Laser Cladding and Plasma Cladding, Int. J. Refract. Met. Hard Mater., 2019, 84, p 1–9. https://doi.org/10.1016/j.ijrmhm.2019.105044

    Article  CAS  Google Scholar 

  31. R. Zhou, G. Chen, B. Liu, J. Wang, L. Han, and Y. Liu, Microstructures and Wear Behaviour of (FeCoCrNi)1–x(WC)x High Entropy Alloy Composites, Int. J. Refract. Met. Hard Mater., 2018, 75(April), p 56–62. https://doi.org/10.1016/j.ijrmhm.2018.03.019

    Article  CAS  Google Scholar 

  32. A. Vyas, J. Menghani, and H. Natu, Metallurgical and Mechanical Properties of Laser Cladded AlFeCuCrCoNi-WC10 High Entropy Alloy Coating, Int. J. Eng., 2020, 33(7), p 1397–1402.

    Google Scholar 

  33. S. Gorsse, M.H. Nguyen, O.N. Senkov, and D.B. Miracle, Database on the Mechanical Properties of High Entropy Alloys and Complex Concentrated Alloys, Data Br., 2018, 21, p 2664–2678. https://doi.org/10.1016/j.dib.2018.11.111

    Article  CAS  Google Scholar 

  34. C. Shang, E. Axinte, W. Ge, Z. Zhang, and Y. Wang, High-Entropy Alloy Coatings with Excellent Mechanical, Corrosion Resistance and Magnetic Properties Prepared by Mechanical Alloying and Hot Pressing Sintering, Surf. Interfaces, 2016, 2017(9), p 36–43. https://doi.org/10.1016/j.surfin.2017.06.012

    Article  CAS  Google Scholar 

  35. S. Zhang, C.L. Wu, J.Z. Yi, and C.H. Zhang, Synthesis and Characterization of FeCoCrAlCu High-Entropy Alloy Coating by Laser Surface Alloying, Surf. Coat. Technol., 2015, 262, p 64–69. https://doi.org/10.1016/j.surfcoat.2014.12.013

    Article  CAS  Google Scholar 

  36. W. Luo, Y. Liu, Y. Luo, and M. Wu, Fabrication and Characterization of WC-AlCoCrCuFeNi High-Entropy Alloy Composites by Spark Plasma Sintering, J. Alloys Compd., 2018, 754, p 163–170. https://doi.org/10.1016/j.jallcom.2018.04.270

    Article  CAS  Google Scholar 

  37. W. Luo, Y. Liu, and J. Shen, Effects of Binders on the Microstructures and Mechanical Properties of Ultrafine WC-10%AlxCoCrCuFeNi Composites by Spark Plasma Sintering, J. Alloys Compd., 2019, 791, p 540–549. https://doi.org/10.1016/j.jallcom.2019.03.328

    Article  CAS  Google Scholar 

  38. H. Luo, S. Zou, Y.H. Chen, Z. Li, C. Du, and X. Li, Influence of Carbon on the Corrosion Behaviour of Interstitial Equiatomic CoCrFeMnNi High-Entropy Alloys in a Chlorinated Concrete Solution, Corros. Sci., 2020, 163, p 108287. https://doi.org/10.1016/j.corsci.2019.108287

    Article  CAS  Google Scholar 

  39. X. Yang, X. Li, Q. Yang, H. Wei, X. Fu, and W. Li, Effects of WC on Microstructure and Corrosion Resistance of Directional Structure Ni60 Coatings, Surf. Coat. Technol., 2020, 385, p 125359. https://doi.org/10.1016/j.surfcoat.2020.125359

    Article  CAS  Google Scholar 

  40. L. Wei, Y. Liu, Q. Li, and Y.F. Cheng, Effect of Roughness on General Corrosion and Pitting of (FeCoCrNi)0.89(WC)0.11 High-Entropy Alloy Composite in 3.5 Wt% NaCl Solution, Corros. Sci., 2019, 146, p 44–57. https://doi.org/10.1016/j.corsci.2018.10.025

    Article  CAS  Google Scholar 

  41. Y. Kuan Zhou, X. Bin Liu, J. Jie Kang, W. Yue, W. Bo Qin, G. Zheng Ma, Z. Qiang Fu, L. Na Zhu, D. Shun She, H. Dou Wang, J. Liang, W. Weng, and C. Biao Wang, Corrosion Behavior of HVOF Sprayed WC-10Co4Cr Coatings in the Simulated Seawater Drilling Fluid Under the High Pressure, Eng. Fail. Anal., 2020, 109, p 104338. https://doi.org/10.1016/j.engfailanal.2019.104338

    Article  CAS  Google Scholar 

  42. W. Qiu, Y. Liu, J. Ye, H. Fan, and Y. Qiu, Effects of (Ti, Ta, Nb, W)(C, N) on the Microstructure, Mechanical Properties and Corrosion Behaviors of WC-Co Cemented Carbides, Ceram. Int., 2017, 43(3), p 2918–2926. https://doi.org/10.1016/j.ceramint.2016.09.124

    Article  CAS  Google Scholar 

  43. C. Yi, H. Fan, J. Xiong, Z. Guo, G. Dong, W. Wan, and H. Chen, Effect of WC Content on the Microstructures and Corrosion Behavior of Ti(C, N)-Based Cermets, Ceram. Int., 2013, 39(1), p 503–509. https://doi.org/10.1016/j.ceramint.2012.06.055

    Article  CAS  Google Scholar 

  44. F.J.J. Kellner, H. Hildebrand, and S. Virtanen, Effect of WC Grain Size on the Corrosion Behavior of WC-Co Based Hardmetals in Alkaline Solutions, Int. J. Refract. Met. Hard Mater., 2009, 27(4), p 806–812. https://doi.org/10.1016/j.ijrmhm.2009.02.004

    Article  CAS  Google Scholar 

  45. C. Ziejewska, J. Marczyk, A. Szewczyk-Nykiel, M. Nykiel, and M. Hebda, Influence of Size and Volume Share of WC Particles on the Properties of Sintered Metal Matrix Composites, Adv. Powder Technol. Soc. Powder Technol. Jpn., 2019, 30(4), p 835–842. https://doi.org/10.1016/j.apt.2019.01.013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author appreciates the funding provided by the Department of Science and Technology, India (DST-EMR/2016/000451) and ACMS Department of IIT-Kanpur for metallurgical characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akash Vyas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyas, A., Menghani, J. & Natu, H. Influence of WC Particle on the Metallurgical, Mechanical, and Corrosion Behavior of AlFeCuCrCoNi-WCx High-Entropy Alloy Coatings. J. of Materi Eng and Perform 30, 2449–2461 (2021). https://doi.org/10.1007/s11665-021-05523-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05523-8

Keywords

Navigation