Skip to main content
Log in

Effect of SiC Content on Hot Corrosion Resistance of TiC and Ti5Si3 Reinforced Ti-Al-Sn-Zr Titanium Matrix Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

TiC and Ti5Si3 reinforced titanium matrix composites (TMCs) were successfully prepared by an in situ reaction of SiC particles with Ti-Al-Sn-Zr alloy through powder metallurgy. By studying the microstructure and phase composition after corrosion at 750 and 850 °C for 30 h in a corrosive environment of 25% NaCl + 75% Na2SO4, the resistance to hot corrosion of composite materials with different contents of SiC particles was valuated. The results showed that at 750 °C, the corrosion depth (18 μm) of the TMCs with 10 vol.% SiCp was 75% less than that of the matrix. After the samples corrosion for 30 h at 750 and 850 °C, the maximum corrosion gain of the TMCs with 10 vol.% SiCp was 6.16 and 30.57 mg cm−2, respectively. The maximum corrosion mass gain decreased by 60.03 and 35.49% compared with the matrix at 750 °C (15.41 mg cm−2) and 850 °C (47.39 mg cm−2). In addition, the XRD result showed that corrosion products of three composites are similar at 750 and 850 °C, and mainly composed of TiO2, SiO2, Al2O3, NaTiO2, Na2Si2O5 and TiS2. The TMCs with 10 vol.% SiCp had more SiO2. All the data showed that SiCp was beneficial to the hot corrosion properties of the samples, and as the content of SiCp increased, the corrosion resistance was better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. D″lessio, A.M. Salvi, and R. Teghil, Silicon Supported TiC Films PRODUCED by Pulsed Laser Ablation, Appl. Surf. Sci., 1998, 134, p 53–62.

    Article  Google Scholar 

  2. N. Ali, S. Bashir, Umm-i-Kalsoom, et al., Theoretical Insight Into the Distinct Photocatalytic Activity Between NiOx and CoOx Loaded Ta3N5 Photocatalyst, Appl. Surf. Sci., 2017, 405, p 298–307.

    Article  CAS  Google Scholar 

  3. T. Kuzumaki, O. Ujiie, H. Ichinose et al., Mechanical Characteristics and Preparation of Carbon Nanotube Fiber-Reinforced Ti Composite, Adv. Eng. Mater., 2000, 2, p 416–418.

    Article  CAS  Google Scholar 

  4. S.C. Tjong and Y.W. Mai, Processing-Structure-Property Aspects of Particulate- and Whisker-Reinforced Titanium Matrix Composites, Compos. Sci. Technol., 2008, 68, p 583–601.

    Article  CAS  Google Scholar 

  5. T. Yamamoto, A. Otsuki, K. Ishihara et al., Synthesis of Near Net Shape High Density TiB/Ti Composite, Mater. Sci. Eng. A, 1997, 239, p 647–651.

    Article  Google Scholar 

  6. L. Lu, M.O. Lai and H.Y. Wang, Synthesis of Titanium Diboride TiB2 and Ti-Al-B Metal Matrix Composites, J. Mater. Sci., 2000, 35, p 241–248.

    Article  CAS  Google Scholar 

  7. C.J. Zhang, F.T. Kong, S.L. Xiao et al., Evolution of Microstructure and Tensile Properties of In Situ Titanium Matrix Composites with Volume Fraction of (TiB + TiC) Reinforcements, Mater. Sci. Eng. A, 2012, 548, p 152–160.

    Article  CAS  Google Scholar 

  8. S. Gorsse and D.B. Miracle, Mechanical Properties of Ti-6Al-4V/TiB Composites with Randomly Oriented and Aligned TiB Reinforcements, Acta Mater., 2003, 51, p 2427–2442.

    Article  CAS  Google Scholar 

  9. N. Dalili, A. Edrisy, K. Farokhzadeh et al., Improving the Wear Resistance of Ti-6Al-4V/TiC Composites Through Thermal Oxidation (TO), Wear, 2010, 269(7), p 590–601.

    Article  CAS  Google Scholar 

  10. Y. Jiao, L.J. Huang and L. Geng, Progress on Discontinuously Reinforced Titanium Matrix Composites, J. Alloy Compd., 2018, 767, p 1196–1215.

    Article  CAS  Google Scholar 

  11. L.J. Huang, S. Wang, L. Geng et al., Low Volume Fraction IN Situ (Ti5Si3 + Ti2C)/Ti Hybrid Composites with Network Microstructure Fabricated by Reaction Hot Pressing of Ti-SiC system, Compos. Sci. Technol., 2013, 82, p 23–28.

    Article  CAS  Google Scholar 

  12. Y. Jiao, L.J. Huang, S.L. Wei et al., Nano-Ti5Si3 Leading to Enhancement of Oxidation Resistance, Corros. Sci., 2018, 140, p 223–230.

    Article  CAS  Google Scholar 

  13. Y.H. Diao and K.M. Zhang, Microstructure and Corrosion Resistance of TC2 Ti Alloy by Laser Cladding with Ti/TiC/TiB2 Powders, Appl. Surf. Sci., 2015, 352, p 163–168.

    Article  CAS  Google Scholar 

  14. X.X. Xu, Y.G. Liu, V. Tabie, C. Li et al., Hot Corrosion Resistance of a Ti-Mo-Nb-Al-Si Titanium Matrix Composites Reinforced with In-Situ TiC Prepared by Powder Metallurgy, Mater. Res. Express, 2019, 6, p 126510.

    Article  Google Scholar 

  15. Q. Liu, W.Z. Miao et al., The Introduction of SiC Into Cu Melts Based on Ti-SiC System and Its Transformation, J. Mater. Res. Technol., 2020, 9(3), p 2881–2891.

    Article  CAS  Google Scholar 

  16. T. Yu, H. Kwon et al., Joining of Ti-Coated Monolithic SiC Using a SiCw/Ti3SiC2 Filler by Electric Field-Assisted Sintering, J. Eur. Ceram. Soc., 2020 https://doi.org/10.1016/j.jeurceramsoc.2020.10.059

    Article  Google Scholar 

  17. X.X. Xu, Li. Chong, M.V. Tabie, S.F. Wang et al., Microstructure and Properties of Ti-Al-Sn-Zr-Nb-Si Matrix Composite REINFORCED with In-Situ TiC and Ti5Si3 Prepared by Powder Metallurgy, Mater. Res. Express, 2019, 6, p 106b3.

    Google Scholar 

  18. Y. Garip, Z. Garip, and O. Ozdemir, Prediction Modeling of Type-I Hot Corrosion Performance of Ti-Al-Mo-X (X=Cr, Mn) Alloys in (Na, K)2SO4 Molten Salt Mixture Environment at 900 °C, J. Alloy Compd., 2020, 843, p 15610.

    Article  Google Scholar 

  19. L. Sun, Q.G. Fu, and J. Sun, Effect of SiO2 Barrier Scale Prepared by Pre-Oxidation on Hot Corrosion Behavior of MoSi2-Based Coating on Nb alloy, Corros. Sci., 2020, 176, p 109051.

    Article  CAS  Google Scholar 

  20. B. Marjan, B. Mansoor, G. Somaye, and K. Fatemeh, Corrosion of Al2O3-Ti Composites Under Inflammatory Condition in Simulated Physiological Solution, Mater. Sci. Eng. C-Mater, 2019, 102, p 200–211.

    Article  Google Scholar 

  21. S.A. Kekare, J.B. Toney, and P.B. Aswath, Oxidation of Ductile Particle Reinforced Ti-48Al Composite, Metall. Mater. Transa. A, 1995, 26(9), p 1835–1845.

    Article  Google Scholar 

  22. S. Gorsse, Y.L. Petitcorps, S. Matar et al., Investigation of the Young’s Modulus of TiB Needles In Situ Produced in Titanium Matrix Composite, Mater. Sci. Eng. A, 2003, 340, p 80–87.

    Article  Google Scholar 

  23. C.L. Ma, D.D. Gu, D.H. Dai, H. Zhang, H.M. Zhang, J.K. Yang, M. Guo, Y.X. Du, and J. Gao, Microstructure Evolution and High-Temperature Oxidation Behaviour of Selective Laser Melted TiC/TiAl Composites, Surf. Coat. Technol., 2019, 375, p 534–543.

    Article  CAS  Google Scholar 

  24. O.I. Peter, A.P.I. Popoola, E. Ajenifuja et al., Effects of Temperature on the Microstructure and Physico-Mechanical Properties of TiNiAl-SiC Composite by Spark Plasma Sintering Technique, Mater. Res. Express., 2019, 6, p 085802.

    Article  Google Scholar 

  25. M. Mitoraj-Królikowska, E. Godlewska et al., Hot Corrosion Behaviour of (γ+α2)-Ti-46Al-8Nb (at.%) and α-Ti-6Al-1Mn (at.%) Alloys, Corros. Sci., 2017, 115, p 18–29.

    Article  Google Scholar 

Download references

Acknowledgment

The author would like to thank Jiangsu University for its technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Xu, X., Liu, Y. et al. Effect of SiC Content on Hot Corrosion Resistance of TiC and Ti5Si3 Reinforced Ti-Al-Sn-Zr Titanium Matrix Composites. J. of Materi Eng and Perform 30, 2439–2448 (2021). https://doi.org/10.1007/s11665-021-05515-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05515-8

Keywords

Navigation