Skip to main content

Advertisement

Log in

Lightweight Medium Entropy Magnesium Alloy with Exceptional Compressive Strength and Ductility Combination

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study focused on the development of magnesium-based medium entropy alloy (Mg MEA). The multicomponent alloy with a composition, Mg62Li13Zn12Cu10Y3 (at.%), was processed using disintegrated melt deposition technique. The reported medium entropy alloys based on light metals, such as aluminum and magnesium, exhibit very low plasticity, and only cast alloys’ properties were investigated. Currently developed Mg MEA showed an appreciable plasticity of 13.9% in as-cast condition. Secondary processing such as extrusion was applicable on the cast alloy due to its high deformability. A change in intermetallics morphology from continuous pattern in cast alloy to discontinuous pattern in extruded alloy was observed. In line with the change in microstructure, remarkably improved compressive properties were realized in extruded alloy as compared to cast alloy. Compressive strength and plasticity increased from 444 MPa and 13.9% in cast alloy to 675 MPa and 32.7% in extruded alloy. Previously reported lightweight MEAs exhibited a limited plasticity up to 6.5% in the cast form. The current lightweight Mg MEA reached a plasticity of more than twice of cast alloy and more than five times in the case of extruded alloy when compared to reported MEAs’ plasticity in open literature. Unlike reported MEAs, currently developed Mg MEA revealed a relatively simple microstructure with three major phases. From the alloy design perspective, a large atomic size difference (δ: 8.49%) in the alloy was the main cause for the intermetallic formation. However, multiple phase formation was mitigated due to the suitable mixing enthalpy (ΔHmix: − 4.52 kJ/mol). This counterbalancing effect from mixing enthalpy led to a simple microstructure, thereby enhancing the mechanical properties in the currently developed Mg MEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. Polmear, D. St John, J.F. Nie, and M. Qian, Light Alloys: Metallurgy of the Light Metals, Elsevier Science, Amsterdam, 2017.

    Google Scholar 

  2. B. Cantor, Multicomponent and High Entropy Alloys, Entropy, 2014, 16, p 4749–4768.

    Article  Google Scholar 

  3. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. and Eng. Struct. Mater. Properties Microstruct. Process., 2004, 375, p 213–218.

    Article  Google Scholar 

  4. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.

    Article  CAS  Google Scholar 

  5. B.S. Murty, J.-W. Yeh, and S. Ranganathan, High-Entropy Alloys, Butterworth-Heinemann, Oxford, 2014.

    Google Scholar 

  6. K.G. Pradeep, N. Wanderka, P. Choi, J. Banhart, B.S. Murty, and D. Raabe, Atomic-Scale Compositional Characterization of a Nanocrystalline AlCrCuFeNiZn High-Entropy Alloy Using Atom Probe Tomography, Acta Mater., 2013, 61(12), p 4696–4706.

    Article  CAS  Google Scholar 

  7. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory High-Entropy Alloys, Intermetallics, 2010, 18(9), p 1758–1765.

    Article  CAS  Google Scholar 

  8. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 2014, 61, p 1–93.

    Article  Google Scholar 

  9. M. Yao, K. Pradeep, C. Tasan, and D. Raabe, A Novel, Single Phase, Non-equiatomic FeMnNiCoCr High-Entropy Alloy with Exceptional Phase Stability and Tensile Ductility, Scripta Mater., 2014, 72, p 5–8.

    Article  Google Scholar 

  10. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, High-Entropy Alloy: Challenges and Prospects, Mater. Today, 2016, 19(6), p 349–362.

    Article  CAS  Google Scholar 

  11. L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw, Deviation from High-Entropy Configurations in the Atomic Distributions of a Multi-principal-Element Alloy, Nat. Commun., 2015, 6, p 5964.

    Article  Google Scholar 

  12. M.-H. Tsai and J.-W. Yeh, High-Entropy Alloys: A Critical Review, Mater. Res. Lett., 2014, 2(3), p 107–123.

    Article  Google Scholar 

  13. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-Off, Nature, 2016, 534(7606), p 227–230.

    Article  CAS  Google Scholar 

  14. J.-W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, JOM, 2013, 65(12), p 1759–1771.

    Article  CAS  Google Scholar 

  15. C.Y. Cheng, Y.C. Yang, Y.Z. Zhong, Y.Y. Chen, T. Hsu, and J.W. Yeh, Physical Metallurgy of Concentrated Solid Solutions from Low-Entropy to High-Entropy Alloys, Curr. Opin. Solid State Mater. Sci., 2017, 21(6), p 299–311.

    Article  CAS  Google Scholar 

  16. Y. Ma, F. Yuan, M. Yang, P. Jiang, E. Ma, and X. Wu, Dynamic Shear Deformation of a CrCoNi Medium-Entropy Alloy with Heterogeneous Grain Structures, Acta Mater., 2018, 148, p 407–418.

    Article  CAS  Google Scholar 

  17. G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George, Reasons for the Superior Mechanical Properties of Medium-Entropy CrCoNi Compared to High-Entropy CrMnFeCoNi, Acta Mater., 2017, 128, p 292–303.

    Article  CAS  Google Scholar 

  18. J. Pešička, R. Král, S. Daniš, P. Minárik, J. Veselý, V. Šíma, and J. Šmilauerová, Structure and Mechanical Properties of FeAlCrV and FeAlCrMo Medium-Entropy Alloys, Mater. Sci. Eng. A, 2018, 727, p 184–191.

    Article  Google Scholar 

  19. A. Gali and E.P. George, Tensile Properties of High- and Medium-Entropy Alloys, Intermetallics, 2013, 39, p 74–78.

    Article  CAS  Google Scholar 

  20. B. Gludovatz, A. Hohenwarter, K.V. Thurston, H. Bei, Z. Wu, E.P. George, and R.O. Ritchie, Exceptional Damage-Tolerance of a Medium-Entropy Alloy CrCoNi at Cryogenic Temperatures, Nat. Commun., 2016, 7, p 10602.

    Article  CAS  Google Scholar 

  21. W. Li, P.K. Liaw, and Y. Gao, Fracture Resistance of High Entropy Alloys: A Review, Intermetallics, 2018, 99, p 69–83.

    Article  CAS  Google Scholar 

  22. R. Carroll, C. Lee, C.W. Tsai, J.W. Yeh, J. Antonaglia, B.A. Brinkman, M. LeBlanc, X. Xie, S. Chen, P.K. Liaw, and K.A. Dahmen, Experiments and Model for Serration Statistics in Low-Entropy, Medium-Entropy, and High-Entropy Alloys, Sci. Rep., 2015, 5, p 16997.

    Article  CAS  Google Scholar 

  23. L. Shao, T. Zhang, L. Li, Y. Zhao, J. Huang, P.K. Liaw, and Y. Zhang, A Low-Cost Lightweight Entropic Alloy with High Strength, J. Mater. Eng. Perform., 2018, 27(12), p 6648–6656.

    Article  CAS  Google Scholar 

  24. E.-J. Baek, T.-Y. Ahn, J.-G. Jung, J.-M. Lee, Y.-R. Cho, and K. Euh, Effects of Ultrasonic Melt Treatment and Solution Treatment on the Microstructure and Mechanical Properties of Low-Density Multicomponent Al70Mg10Si10Cu5Zn5 Alloy, J. Alloys Compd., 2017, 696, p 450–459.

    Article  CAS  Google Scholar 

  25. J.M. Sanchez, I. Vicario, J. Albizuri, T. Guraya, and E.M. Acuna, Design, Microstructure and Mechanical Properties of Cast Medium Entropy Aluminium Alloys, Sci. Rep., 2019, 9(1), p 6792.

    Article  Google Scholar 

  26. R. Li, J.C. Gao, and K. Fan, Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys, Mater. Sci. Forum, 2010, 650, p 265–271.

    Article  CAS  Google Scholar 

  27. X. Yang, S.Y. Chen, J.D. Cotton, and Y. Zhang, Phase Stability of Low-Density, Multiprincipal Component Alloys Containing Aluminum, Magnesium, and Lithium, JOM, 2014, 66(10), p 2009–2020.

    Article  CAS  Google Scholar 

  28. F. Otto, Y. Yang, H. Bei, and E.P. George, Relative Effects of Enthalpy and Entropy on the Phase Stability of Equiatomic High-Entropy Alloys, Acta Mater., 2013, 61(7), p 2628–2638.

    Article  CAS  Google Scholar 

  29. S. Guo and C.T. Liu, Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase, Prog. Nat. Sci. Mater. Int., 2011, 21(6), p 433–446.

    Article  Google Scholar 

  30. X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-component Alloys, Mater. Chem. Phys., 2012, 132(2–3), p 233–238.

    Article  CAS  Google Scholar 

  31. S. Guo, Q. Hu, C. Ng, and C.T. Liu, More than Entropy in High-Entropy Alloys: Forming Solid Solutions or Amorphous Phase, Intermetallics, 2013, 41, p 96–103.

    Article  Google Scholar 

  32. S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 2011, 109, p 103505-1–103505-5.

    Article  Google Scholar 

  33. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys, Adv. Eng. Mater., 2008, 10(6), p 534–538.

    Article  CAS  Google Scholar 

  34. C.R. Barbosa, J.O.M.d. Lima, G.M.H. Machado, H.A.M.d. Azevedo, F.S. Rocha, A.S. Barros, and O.F.L.d. Rocha, Relationship Between Aluminum-Rich/Intermetallic Phases and Microhardness of a Horizontally Solidified AlSiMgFe Alloy, Mater. Res., 2018, 22(1), p 1–12.

    Article  Google Scholar 

  35. E. Broitman, Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview, Tribol. Lett., 2017, 65(23), p 1–18.

    Google Scholar 

  36. K.S. Tun, T.S. Srivatsan, and M. Gupta, Processing, Microstructure and Mechanical Characterization of MgAlLiZnCaCu high entropy alloy, Processing and Fabrication of Advance Materials XXVII, Jönköping, Sweden, 2019, pp. 27–29 May 2019

  37. M. Gupta and K.S. Tun, Light Weight High Entropy Alloys: Processing Challenges and Properties, Recent Patents on Materials Science, 2017, 10(2), p 116–121.

    Article  CAS  Google Scholar 

  38. K.S. Tun and M. Gupta, Microstructural Evolution in MgAlLiZnCaY and MgAlLiZnCaCu Multicomponent High Entropy Alloys, Mater. Sci. Forum, 2018, 928, p 183–187.

    Article  Google Scholar 

  39. G. Cakmak, Effect of Heat Treatment on the Microstructure, Phase Distribution, and Mechanical Properties of AlCoCuFeMnNi High Entropy Alloy, Adv. Mater. Sci. Eng., 2017, 2017, p 1–6.

    Article  Google Scholar 

  40. L.Y. Sheng, F. Yang, T.F. Xi, Y.F. Zheng, and J.T. Guo, Improvement of Compressive Strength and Ductility in NiAl–Cr(Nb)/Dy Alloy by Rapid Solidification and HIP Treatment, Intermetallics, 2012, 27, p 14–20.

    Article  CAS  Google Scholar 

  41. Y. Chen, S. Tekumalla, Y.B. Guo, and M. Gupta, Introducing Mg-4Zn-3Gd-1Ca/ZnO Nanocomposite with Compressive Strengths Matching/Exceeding that of Mild Steel, Sci. Rep., 2016, 6, p 32395.

    Article  CAS  Google Scholar 

  42. M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, Al2O3 Nanoparticle Addition to Commercial Magnesium Alloys: Multiple Beneficial Effects, Nanomaterials (Basel, Switzerland), 2012, 2(2), p 147–162.

    Article  CAS  Google Scholar 

  43. M.F. Horstemeyer, Damage influence on Bauschinger effect of a cast A356 aluminum alloy, Scripta Mater., 1998, 39(11), p 1491–1495.

    Article  CAS  Google Scholar 

  44. S.K. Shaha, F. Czerwinski, W. Kasprzak, and D.L. Chen, Tensile and Compressive Deformation Behavior of the Al–Si–Cu–Mg Cast Alloy with Additions of Zr, V and Ti, Mater. Des., 2014, 59, p 352–358.

    Article  CAS  Google Scholar 

  45. V. Nesetova and E.Z. Lajtai, Fracture from Compressive Stress Concentrations Around Elastic Flaws, Int. J. Rock Mech. Mining Sci. Geomech. Abstracts, 1973, 10(4), p 265–284.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Ministry of Education Academic Research Funding, Singapore (WBS# R-265-000-586-114) for the financial support in carrying out this research work.

Author information

Authors and Affiliations

Authors

Contributions

KST and MG conceptualized and designed the experiments. KST and VC carried out processing, testing and data collection and analysis. Manuscript preparation was done by KST. MG provided supervision, funding acquisition and manuscript review and editing.

Corresponding author

Correspondence to Manoj Gupta.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tun, K.S., Charadva, V. & Gupta, M. Lightweight Medium Entropy Magnesium Alloy with Exceptional Compressive Strength and Ductility Combination. J. of Materi Eng and Perform 30, 2422–2432 (2021). https://doi.org/10.1007/s11665-021-05478-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05478-w

Keywords

Navigation