Skip to main content
Log in

Electrochemical and Mechanical Investigation of Newly Synthesized NiO-ZrO2 Nanoparticle–Grafted Polyurethane Nanocomposite Coating on Mild Steel in Chloride Media

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

NiO-ZrO2 nanoparticles were prepared and characterized by Fourier transformed infrared spectroscopy (FTIR) and x-ray diffractometer (XRD) analysis. The NiO-ZrO2 nanoparticles were incorporated into polyurethane (PU) and the resultant polyurethane (PU)/NiO-ZrO2 nanocomposite was coated on the steel sample. The anticorrosion behavior of the PU/NiO-ZrO2 nanocomposite coating was electrochemically studied and compared with pure polyurethane coating by scanning electrochemical microscopy (SECM), potentiodynamic polarization studies and electrochemical impedance spectroscopy (EIS). EIS studies showed a pronounced protection performance for PU/NiO-ZrO2 coating in natural seawater. SECM analysis measured lower current for the PU/NiO-ZrO2 at the scratch of the coated surface compared to PU coating. The surface characterization and elemental composition of the coated samples were examined by surface morphological studies (SEM/EDX). Dynamic mechanical analysis (DMA) test was also carried out to examine the coated nanocomposite. The results provided valuable information about the protective performance and failure analysis of PU/NIO-ZrO2 nanocomposite coated surface. Field emission-scanning electron microscopy/energy-dispersive x-ray (FE-SEM/EDX) analysis was used to examine the corrosion products formed on the surface of coated sample. The formation of thin films of oxides and chlorides of Ni and Zr blocks the penetration of corrosive ion in the coating/metal interface. It was revealed from the mechanical properties of the nanocomposite and pure PU coatings that mixed metal oxide nanoparticles (NiO-ZrO2) enhanced mechanical as well as protection properties of the polyurethane coating against corrosion. A possible protection mechanism is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Referencess

  1. D. Schmelter, A. Langry, A. Koenig, P. Keil, F. Leroux and H. Hintze-Bruening, Inhibition of Steel Corrosion and Alkaline Zinc Oxide Dissolution by Dicarboxylate Bola-Amphiphiles: Self-Assembly Supersedes Host Guest Conception, Sci. Rep, 2009, 7, p 1–12.

    Google Scholar 

  2. A.R. Elkais, M.M. Gvozdenovi, B.Z. Jugovi and B.N. Grgur, The Influence of Thin Benzoate-Doped Polyaniline Coatings on Corrosion Protection of Mild Steel In Different Environments, Prog. Org. Coat, 2013, 76, p 670–676.

    Article  CAS  Google Scholar 

  3. X. Joseph-Raj and T. Nishimura, Evaluation of the Corrosion Protection Performance of Epoxy-Coated High Manganese Steel by SECM and EIS Techniques, J Fail Anal Prev, 2016, 16, p 417–426.

    Article  Google Scholar 

  4. S.C. Nwanonenyi, H.C. Obasi, M.U. Obidiegwu and I.C. Chukwujike, Anticorrosion Response of Polymer Mixture on Mild Steel in Hydrochloric Acid Environment, Emergent Mater, 2020 https://doi.org/10.1007/s42247-020-00120-2

    Article  Google Scholar 

  5. P. Poornima-Vijayan and S.A. Mariam-Ali, TiO2 Nanotubes and Mesoporous Silica as Containers in Self-Healing Epoxy Coating, Sci. Rep., 2016, 6, p 1–9.

    Article  Google Scholar 

  6. J.R. Xavier, Investigation on the Effect of Nano-Ceria on the Epoxy Coatings for Corrosion Protection of Mild Steel in Natural Seawater, Anti-Corros Methods Mater, 2018, 65, p 38–45.

    Article  CAS  Google Scholar 

  7. E.M. Fayyad, K.K. Sadasivuni, D. Ponnamma and M.A.A. Al-Maadeed, Oleic Acid-Grafted Chitosan/Graphene Oxide Composite Coating for Corrosion Protection of Carbon Steel, Carbohyd. Polym., 2016, 151, p 871–878.

    Article  CAS  Google Scholar 

  8. J.R. Xavier, High Protection Performance of Vanadium Pentoxide-Embedded Polyfuran/Epoxy Coatings on Mild Steel, Polym. Bull, 2020 https://doi.org/10.1007/s00289-020-03400-3

    Article  Google Scholar 

  9. A. Joshi, E. Abdullayev, A. Vasiliev, O. Volkova and Y. Lvov, Interfacial Modification of Clay Nanotubes for the Sustained Release of Corrosion Inhibitors, Langmuir, 2013, 29, p 7439–7448.

    Article  CAS  Google Scholar 

  10. X.J. Raj, Application of EIS and SECM Studies for Investigation of Anticorrosion Properties of Epoxy Coatings Containing Zinc Oxide Nanoparticles on Mild Steel In 35% NaCl Solution, J. Mater. Eng. Perform., 2017, 26, p 3245–3253.

    Article  CAS  Google Scholar 

  11. K. Jlassi, A.B. Radwan, K.K. Sadasivuni, M. Mrlik, A.M. Abdullah, M.M. Chehimi and I. Krupa, Anti-Corrosive and Oil Sensitive Coatings Based on Epoxy/Polyaniline/Magnetite-Clay Composites Through Diazonium Interfacial Chemistry, Sci. Rep, 2018, 8, p 13369.

    Article  Google Scholar 

  12. J.R. Xavier, Investigation into the Effect of Cr2O3 Nanoparticles on the Protective Properties of Epoxy Coatings on Carbon Steel in 3.5% NaCl Solution By Scanning Electrochemical Microscopy, Prot Met Phys Chem Surf, 2019, 55, p 80–88.

    Article  Google Scholar 

  13. M. Ibrahim, K. Kannan, H. Parangusan, S. Eldeib, O. Shehata, M. Ismail, R. Zarandah and K.K. Sadasivuni, Enhanced Corrosion Protection of Epoxy/ZnO-NiO Nanocomposite Coatings on Steel, Coatings, 2020, 10, p 783.

    Article  CAS  Google Scholar 

  14. J.R. Beryl and J.R. Xavier, Electrochemical and Mechanical Studies of Epoxy Coatings Containing Eco-Friendly Nanocomposite Consisting of Silane Functionalized Clay-Epoxy on Mild Steel, J Bio Tribo Corros, 2020, 6, p 126. https://doi.org/10.1007/s40735-020-00424-0

    Article  Google Scholar 

  15. K. Deepa and T.V. Venkatesha, Comparative Anticorrosion Performance of Electrochemically Produced Zn–NiO and Zn–NiO–ZrO2 Composite Coatings on Mild Steel, Surf. Eng. Appl. Electrochem., 2019, 55, p 317–323.

    Article  Google Scholar 

  16. B. Abdollahi, D. Afzali and Z. Hassani, Corrosion Inhibition Properties of SiO2-ZrO2 Nanocomposite Coating on Carbon Steel 178, Anti-Corrosion Methods Mater., 2018, 65, p 66–72.

    Article  CAS  Google Scholar 

  17. Joseph Raj Xavier, Electrochemical, Mechanical and Adhesive Properties of Surface Modified Nio-Epoxy Nanocomposite Coatings on Mild Steel, Mater. Sci. Eng., B, 2020, 260, p 114639. https://doi.org/10.1016/j.mseb.2020.114639

    Article  CAS  Google Scholar 

  18. J.R. Xavier and R. Nallaiyan, Application of EIS and SECM Studies for Investigation of Anticorrosion Properties of Epoxy Coatings Containing ZrO2 Nanoparticles on Mild Steel in 3.5% NaCl Solution, J Fail. Anal. Preven, 2016, 16, p 1082–1091.

    Article  Google Scholar 

  19. D.K. Chattopadhyay and K.V.S.N. Raju, Structural Engineering of Polyurethane Coatings for High Performance Applications, Prog Polym Sci., 2007, 32, p 352–418.

    Article  CAS  Google Scholar 

  20. Y. Xu, Z. Petrovic, S. Das and G.L. Wilkes, Morphology and Properties of Thermoplastic Polyurethane with Dangling Chain in Ricinoleate-Based Soft Segment, Polymer, 2008, 49, p 4248–4258.

    Article  CAS  Google Scholar 

  21. V.M. Mannari and J.L. Massingill, Two-Component High-Solid Polyurethane Coating System Based on Soy Polyols, J Coat Technol Res, 2006, 3, p 151–157.

    Article  CAS  Google Scholar 

  22. M. Alam, N.M. Alandis, F. Zafar, E. Sharmin and Y.M. Al-Mohammadi, Polyurethane-TiO2 Nanocomposite Coatings From Sunflower- Oil-Based Amide Diol as Soft Segment, J MacromolSci A, 2018, 55, p 698–708.

    Article  CAS  Google Scholar 

  23. J.R. Xavier, Investigation on the Anticorrosion, Adhesion and Mechanical Performance of Epoxy Nanocomposite Coatings Containing Epoxy-Silane Treated Nano-MoO3 on Mild Steel, J Adhes Sci Technol, 2020, 34, p 115–134.

    Article  CAS  Google Scholar 

  24. U. Erten, H. Ibrahim-Unal, S. Zor and S. Hakan-Atapek, Structural and Electrochemical Characterization of Zn–TiO2 and Zn–WO3 Nanocomposite Coatings Electrodeposited on St 37 Steel, J App Electrochem, 2015, 45, p 991–1003.

    Article  CAS  Google Scholar 

  25. J.R. Xavier, Effect of Surface Modified WO3 Nanoparticle on the Epoxy Coatings for the Adhesive and Anticorrosion Properties of Mild Steel, J Appl Polym Sci, 2020, 137, p 48323. https://doi.org/10.1002/app.48323

    Article  CAS  Google Scholar 

  26. X. Shi, T.A. Nguyen, Z. Suo, Y. Liu and R. Avci, Effect of Nanoparticles on the Anticorrosion and Mechanical Properties of Epoxy Coating, Surf Coat Technol, 2009, 204, p 237–245.

    Article  CAS  Google Scholar 

  27. J. Yeh, H. Huang, C. Chen, W. Su and Y. Yu, Siloxanemodifed Epoxy Resin-Clay Nanocomposite Coatings With Advanced Anticorrosive Properties Prepared by A Solution Dispersion Approach, Surf Coat Technol, 2006, 200, p 2753–2763.

    Article  CAS  Google Scholar 

  28. E. Huttunen-Saarivirta, G.V. Vaganov, V.E. Yudin and J. Vuorinen, Characterization and Corrosion Protection Properties of Epoxy Powder Coatings Containing Nanoclays, Prog. Org. Coat, 2013, 76(4), p 757–767.

    Article  CAS  Google Scholar 

  29. K. Kannan, D. Radhika, M.P. Nikolova, K.K. Sadasivuni, H. Mahdizadeh and U. Verma, Structural Studies of Bio-Mediated NiO Nanoparticles for Photocatalytic and Antibacterial Activities, Inorg. Chem. Commun., 2020, 113, p 107755. https://doi.org/10.1016/j.inoche.2019.107755

    Article  CAS  Google Scholar 

  30. M.M. Foroughi, H. Beitollahi, S. Tajik, A. Akbari and R. Hosseinzadeh, Electrochemical Determination of N-acetylcysteine and Folic Acid in Pharmaceutical and Biological Samples Using a Modified Carbon Nanotube Paste Electrode, Int J Electrochem Sci, 2014, 9, p 8407–8421.

    Google Scholar 

  31. Z. Wei, H. Qiao, H. Yang, C. Zhang and X. Yan, Characterization of NiO Nanoparticles by Anodic Arc Plasma Method, J. Alloys Compd, 2009, 479, p 855–858.

    Article  CAS  Google Scholar 

  32. A.K. Singh and U.T. Nakate, Microwave Synthesis, Characterization, and Photoluminescence Properties of Nanocrystalline Zirconia, The Scientific World Journal, 2014 https://doi.org/10.1155/2014/349457

    Article  Google Scholar 

  33. Y. Liu, L. Wang, C. Zhang, K. Zhang and G. Liu, A Hollow Porous Mn2O3 Microcontainer for Encapsulation and Release of Corrosion Inhibitors, ECS Electrochem. Lett, 2013, 2, p 39–42.

    Article  Google Scholar 

  34. J. Li, L. Ecco, A. Ahniyaz, M. Fedel and J. Pana, In Situ AFM and Electrochemical Study of a Waterborne Acrylic Composite Coating With CeO2 Nanoparticles for Corrosion Protection of Carbon Steel, J Electrochem Soc, 2015, 162, p 610–618.

    Article  Google Scholar 

  35. X.J. Raj and T. Nishimura, Corrosion Protection Performance of epoxy Coated High Tensile Strength Steel Measured by Scanning Electrochemical Microscope and Electrochemical Impedance Spectroscopy Techniques, ISIJ Int., 2014, 54, p 693–699.

    Article  Google Scholar 

  36. T.A. Hilder and J.M. Hill, Carbon Nanotubes as Drug Delivery Nanocapsules, Curr. Appl. Phys., 2008, 8, p 258–261.

    Article  Google Scholar 

  37. A. Mejri, D. Vardanega, B. Tangour, T. Gharbi and F. Picaud, Encapsulation into Carbon Nanotubes and Release of Anticancer Cisplatin Drug Molecule, J. Phys. Chem., 2015, 119, p 604–611.

    Article  CAS  Google Scholar 

  38. S.R. Jameela and A. Jayakrishnan, Glutaraldehyde Cross-Linked Chitosan Microspheres as a Long Acting Biodegradable Drug Delivery Vehicle: Studies on the in Vitro Release of Mitoxantrone and in vivo Degradation of Microspheres in Rat Muscle, Biomaterials, 1995, 16, p 769–775.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Raj Xavier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xavier, J.R. Electrochemical and Mechanical Investigation of Newly Synthesized NiO-ZrO2 Nanoparticle–Grafted Polyurethane Nanocomposite Coating on Mild Steel in Chloride Media. J. of Materi Eng and Perform 30, 1554–1566 (2021). https://doi.org/10.1007/s11665-020-05448-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05448-8

Keywords

Navigation