Skip to main content

Advertisement

Log in

Influence of Rotational Magnetorheological Abrasive Flow Finishing Process on Biocompatibility of Stainless Steel 316L

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Surface morphology plays a significant part in the longevity of the bio-implants. In this regard, the surface finishing of biomedical implants such as 316L stainless steel (SS 316L) requires intensive focus. A rotational magnetorheological abrasive flow finishing process (R-MRAFF) was engineered to ensure SS 316L surface uniformity within the nanometer range. Various process parameters such as pressure, revolution of the magnet, number of cycles, and distance between permanent magnet in rotating die and workpiece fixture have been taken into account. In this study, three different surface morphology samples A, B, and C with the surface roughness of 167, 173, and 184 nm, respectively, were compared to sample D which is pristine SS 316L with SR of 319 nm. The effect of biocompatibility achieved by using the R-MRAFF process was measured by comparing the finished sample with the pristine sample. Scanning electron microscopy images reveal the level of finishing obtained using the R-MRAFF process. From the surface wettability analysis, the finished surface exhibits hydrophilic nature (θ < 90°). X-ray photon spectroscopy study concludes that R-MRAFF promotes stable oxide formation in surface layers. Corrosion studies were carried out using potentiodynamic polarization (PDP) study and electron impedance spectroscopy (EIS) in artificial blood plasma (ABP). The corrosion rate was reduced from 4.3064 to 0.09236 µm/year in the finished samples with an improved protection efficiency of 97.85%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Park, Biomaterials Science and Engineering, Biomed. Eng. IEEE Trans., 1985, 1, p 990

    Article  Google Scholar 

  2. M.C. Tanzi, S. Farè, and G. Candiani, Chapter 4—biomaterials and applications, in Foundations of Biomaterials Engineering, Eds. (Academic Press, 2019), pp. 199–287.

  3. P. Wan, Y. Ren, B. Zhang, and K. Yang, Effect of Nitrogen on Blood Compatibility of Nickel-Free High Nitrogen Stainless Steel for Biomaterial, Mater. Sci. Eng. C, 2010, 30(8), p 1183–1189

    Article  CAS  Google Scholar 

  4. J. Yu, Z.J. Zhao, and L.X. Li, Corrosion Fatigue Resistances of Surgical Implant Stainless Steels and Titanium Alloy, Corros. Sci., 1993, 35(1), p 587–597

    Article  CAS  Google Scholar 

  5. K. Rokosz, T. Hryniewicz, S. Raaen, and J. Valícek, SEM/EDX, XPS, Corrosion and Surface Roughness Characterization of AISI, 316L SS after Electrochemical Treatment in Concentrated HNO3, Teh. Vjesn., 2015, 22, p 125–131

    Article  Google Scholar 

  6. T. Hryniewicz, K. Rokosz, and R. Rokicki, Electrochemical and XPS Studies of AISI, 316L Stainless Steel after Electropolishing in a Magnetic Field, Corros. Sci., 2008, 50(9), p 2676–2681

    Article  CAS  Google Scholar 

  7. C.N. Elias, Y. Oshida, J.H.C. Lima, and C.A. Muller, Relationship Between Surface Properties (Roughness, Wettability and Morphology) of Titanium and Dental Implant Removal Torque, J. Mech. Behav. Biomed. Mater., 2008, 1(3), p 234–242

    Article  Google Scholar 

  8. G. Selvaduray, S. Trigwell, Effect of Surface Treatment on Surface Characteristics and Biocompatibility of AISI 316L Stainless Steel, 2006, pp. 27–28

  9. V. Jain, A. Sidpara, M. Sankar, and M. Das, Nano-finishing Techniques: A Review, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2012, 226, p 327–346

    Article  CAS  Google Scholar 

  10. M. Das, V. Jain, and P. Ghoshdastidar, Nanofinishing of Flat Workpieces Using Rotational-Magnetorheological Abrasive Flow Finishing (R-MRAFF) Process, Int. J. Adv. Manuf. Technol., 2011, 62, p 405–420

    Article  Google Scholar 

  11. M. Das, V.K. Jain, and P.S. Ghoshdastidar, Nano-finishing of Stainless-Steel Tubes Using Rotational Magnetorheological Abrasive Flow Finishing Process, Mach. Sci. Technol., 2010, 14(3), p 365–389

    Article  CAS  Google Scholar 

  12. R. Streicher, M. Schmidt, and S. Fiorito, Nanosurfaces and Nanostructures for Artificial Orthopedic Implants, Nanomedicine (Lond), 2008, 2, p 861–874

    Article  Google Scholar 

  13. S. Osman, C.M. Ariffin, M. Ibrahim, and D. Kurniawan, Effect of Cutting Speed on Bio-Corrosion of AISI, 316L Stainless Steel, ARPN J. Eng. Appl. Sci., 2016, 11, p 11178–11182

    Google Scholar 

  14. C.C. Shih, C.M. Shih, Y.Y. Su, L.H.J. Su, M.S. Chang, and S.J. Lin, Effect of Surface Oxide Properties on Corrosion Resistance of 316L Stainless Steel for Biomedical Applications, Corros. Sci., 2004, 46(2), p 427–441

    Article  CAS  Google Scholar 

  15. M. Salahshoor, C. Li, Z.Y. Liu, X.Y. Fang, and Y.B. Guo, Surface Integrity and Corrosion Performance of Biomedical Magnesium-Calcium Alloy Processed by Hybrid Dry Cutting-Finish Burnishing, J. Mech. Behav. Biomed. Mater., 2018, 78, p 246–253

    Article  CAS  Google Scholar 

  16. Z. Ozdemir, A. Ozdemir, and G.B. Basim, Application of Chemical Mechanical Polishing Process on Titanium Based Implants, Mater. Sci. Eng. C, 2016, 68, p 383–396

    Article  CAS  Google Scholar 

  17. G. Anbuchezhiyan, B. Mohan, N. Senthil Kumar, R. Pugazhenthi, Synthesis and characterization of silicon nitride reinforced Al-Mg-Zn alloy composites (2020). https://doi.org/10.1007/s12540-020-00906-3

  18. R. Alsaeedi, Z. Ozdemir, Evaluation of chemical mechanical polishing-based surface modification on 3D dental implants compared to alternative methods. Materials (Basel) 11(11) (2018)

  19. A. Barman and M. Das, Nano-finishing of Bio-titanium Alloy to Generate Different Surface Morphologies by Changing Magnetorheological Polishing Fluid Compositions, Precis. Eng., 2018, 51, p 145–152

    Article  Google Scholar 

  20. M.J.K. Lodhi, K.M. Deen, M.C. Greenlee-Wacker, and W. Haider, Additively Manufactured 316L Stainless Steel with Improved Corrosion Resistance and Biological Response for Biomedical Applications, Addit. Manuf., 2019, 27, p 8–19

    CAS  Google Scholar 

  21. H.T. Spijker, R. Graaff, P.W. Boonstra, H.J. Busscher, and W. Van Oeveren, On the Influence of Flow Conditions and Wettability on Blood Material Interactions, Biomaterials, 2003, 24(26), p 4717–4727

    Article  CAS  Google Scholar 

  22. Y.J. Lim, Y. Oshida, C.J. Andres, and M.T. Barco, Surface Characterizations of Variously Treated Titanium Materials, Int. J. Oral Maxillofac. Implants (United States), 2001, 16(3), p 333–342

    CAS  Google Scholar 

  23. Q. Xiao, Z. Lu, J. Chen, J. Ma, Q. Xiong, H. Li, J. Xu, and T. Shoji, Magnetoelectropolishing Treatment for Improving the Oxidation Resistance of 316L Stainless Steel in Pressurized Water Reactor Primary Water, J. Nucl. Mater., 2019, 518, p 357–369

    Article  CAS  Google Scholar 

  24. G. Anbuchezhiyan, B. Mohan, D. Sathyanarayanan, and T. Muthuramlingam, Synthesis and Characterization of Hollow Glass Microspheres Reinforced Magnesium Alloy Matrix Syntactic Foam, J. Alloys Compd., 2017, 719, p 125–132

    Article  CAS  Google Scholar 

  25. E. Leitao, R.A. Silva, and M.A. Barbosa, Electrochemical and Surface Modifications on N+ -Ion-Implanted 316L Stainless Steel, J. Mater. Sci. Mater. Med., 1997, 8(6), p 365–368

    Article  CAS  Google Scholar 

  26. A.R. Brooks, On the Role of Cr in the Passivity of Stainless Steel, J. Electrochem. Soc., 1986, 133(12), p 2459

    Article  CAS  Google Scholar 

  27. M. Talha, C.K. Behera, and O.P. Sinha, A Review on Nickel-Free Nitrogen Containing Austenitic Stainless Steels for Biomedical Applications, Mater. Sci. Eng. C, 2013, 33(7), p 3563–3575

    Article  CAS  Google Scholar 

  28. P. Schmuki, H. Hildebrand, A. Friedrich, and S. Virtanen, The Composition of the Boundary Region of MnS Inclusions in Stainless Steel and Its Relevance in Triggering Pitting Corrosion, Corros. Sci., 2005, 47(5), p 1239–1250

    Article  CAS  Google Scholar 

  29. J.S. Noh, N.J. Laycock, W. Gao, and D.B. Wells, Effects of Nitric Acid Passivation on the Pitting Resistance of 316 Stainless Steel, Corros. Sci., 2000, 42(12), p 2069–2084

    Article  CAS  Google Scholar 

  30. D. Briggs, Handbook of X-ray photoelectron spectroscopy, in Physical Electronics Division, ed. by C.D. Wanger, W.M. Riggs, L.E. Davis, J.F. Moulder, G. E. Muilenberg (Perkin-Elmer Corp., Eden Prairie, Minnesota, USA, 1979), 190 pp. $195, Surf. Interface Anal., 1981, 3(4), pp v–v

  31. A.V. Naumkin, A. Kraut-Vass, S.W. Gaarenstroom, and C.J. Powell, NIST X-RayPhotoelectron Spectroscopy Database, Version 4.1 (National Institute of Standards and Technology, Gaithersburg, 2012), NIST X-ray Photoelectron Spectrosc. Database, Version 4.1

  32. J. Zhao, Z. Zhai, D. Sun, C. Yang, X. Zhang, N. Huang, X. Jiang, and K. Yang, Antibacterial Durability and Biocompatibility of Antibacterial-Passivated 316L Stainless Steel in Simulated Physiological Environment, Mater. Sci. Eng. C, 2019, 100, p 396–410

    Article  CAS  Google Scholar 

  33. M. Askarian, M. Peikari, and S. Javadpour, Dichromate Effect on the Passive Layer of 316L Stainless Steel, WIT Trans. Eng. Sci., 2009, 62, p 27–36

    Article  Google Scholar 

  34. W. Han and F. Fang, Two-Step Electropolishing of 316L Stainless Steel in a Sulfuric Acid-Free Electrolyte, J. Mater. Process. Technol., 2020, 279, p 116558

    Article  CAS  Google Scholar 

  35. N. Ramadoss, K. Pazhanivel, and G. Anbuchezhiyan, Synthesis of B4C and BN Reinforced Al7075 Hybrid Composites Using Stir Casting Method, J. Mater. Res. Technol., 2020, 9(3), p 6297–6304

    Article  CAS  Google Scholar 

  36. ASTM G59-97, Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, ASTM International, West Conshohocken, 2014

    Google Scholar 

  37. M. Miller and P. Liaw, Bulk Metallic Glasses: An Overview, Springer, New York, 2007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Karthikeyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthikeyan, S., Mohan, B. & Kathiresan, S. Influence of Rotational Magnetorheological Abrasive Flow Finishing Process on Biocompatibility of Stainless Steel 316L. J. of Materi Eng and Perform 30, 1545–1553 (2021). https://doi.org/10.1007/s11665-020-05442-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05442-0

Keywords

Navigation