Skip to main content
Log in

Effects of Interdomain and Intradomain Pores of Cu-Zn Ferrite Substituted with Nd Investigated Using Positron Annihilation Lifetime Technique

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Positron annihilation lifetime spectroscopy at room temperature is used to investigate polycrystalline Cu-Zn ferrite samples substituted with Nd. Standard ceramic technique is used to prepare all investigated samples. The variation of positron annihilation parameters I1%, I2%, τ1, and τ2 are demonstrated with grain size, initial permeability, homogeneity of the samples, and electrical resistivity with Nd concentration. The important novel points are: (1) Intragranular pores are equal to the sum of intra- and interdomain pores. The lifetime τ1 is increased due to the decrease of the intradomain pores. The initial permeability and homogeneity are decreased with increasing the interdomain pores. The electrical resistivity is increased due to the increase of the interdomain pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O.M. Hemeda, A.M. Henaish, S.F. Mansour, T. Sharshar, and A. Mahmoud, Crystalline CoLaxFe2−xO4 Prepared by Ceramic Method, Appl. Phys. A, 2020, 126(2), p 126

    Article  Google Scholar 

  2. Z.M. Abdulhamid, A.A. Sattar, A.S. Darwis, and A.A. Ghani, Correlation of Cation Distribution with Structure, Magnetic and Electrical Properties of Ultrafine Ni2+ doped CoFe2O4, J. Appl Phys A, 2020, 126(1), p 2

    Article  Google Scholar 

  3. J. Liang, Y. Huang, S. Zhang, X. Wu, W. Wu, and J. Xia, Structure, magnetic properties, and exchange-coupling effect of Co0.6Mg0.15NdxFe2.25–xO4/Co, Appl. Phys. A, 2020, 126, p 358

    Article  CAS  Google Scholar 

  4. N. Suo, A. Sun, and Z. Dang, Effect of Al3+ ion substituted Ni-Mg-Co ferrited Prepared by Sol-Gel Auto-combustion on Lattice Structure and Magnetic Properties, J. Appl. Phys. A, 2020, 126, p 183

    Article  CAS  Google Scholar 

  5. E.E. Ateia, M. Abdelmaksoud, M. Arman, and A.S. Shafaay, Comparative Study on the Physical Properties of Rare Earth Substituted Nano-sized CoFe2O4, J. Appl. Phys. A, 2020, 126, p 91

    Article  CAS  Google Scholar 

  6. K.H. Maria, U.S. Akther, and M.N.I. Khan, Estimation of Structural, Electrical and Magnetic Variations of Mn-Ni-Zn Ferrites by Substituting Rare earth Y3+ for High-Frequency Applications, J. Supercond. Novel Magn., 2020, 33, p 2133

    Article  CAS  Google Scholar 

  7. S. Liang, B.G. Ravi, S. Sampath, and R.J. Gambino, Atmospheric Plasma Sprayed Cobalt Ferrite Coatings For Magneto-strictive Sensor Applications, IEEE Trans. Magn., 2007, 43, p 2391

    Article  CAS  Google Scholar 

  8. A.M. Samy and E.H. Aly, Effect of Annealing Temperature on Prepared Nanoparticles Li-Ferrite Using Positron Annihilation Lifetime Technique, Mater. Sci. Appl., 2015, 6, p 436

    CAS  Google Scholar 

  9. E.H. Aly and A.M. Samy, A Study of Some Properties for Li-Mn Nanoparticles Ferrite Using Positron Annihilation Lifetime Technique, J. Alloys Compd., 2015, 647, p 427

    Article  CAS  Google Scholar 

  10. G. Bulai, L. Diamandescu, I. Dumitru, S. Gurlui, M. Feder, and O.F. Caltun, Effect of Rare Earth substitution in Cobalt Ferrite Bulk Materials, J. Magn. Magn. Mater., 2015, 390, p 123

    Article  CAS  Google Scholar 

  11. A.K. Nikumbh, R.A. Pawar, D.V. Nighot, G.S. Gugale, M.D. Sangale, M.B. Khanvilkar, and A.V. Nagawade, Structural, Electrical properties of Rare-Earth substituted Cobalt Ferrites Nanoparticles synthesized by the Co-precipitation method, J. Magn. Magn. Mater., 2014, 355, p 201

    Article  CAS  Google Scholar 

  12. W.R. Agami, M.A. Ashmawy, and A.A. Sattar, Structural, IR, and Magnetic Studies of Annealed Li-Ferrite Nano-particles, J. Mater. Eng. Perform., 2014, 23(2), p 604

    Article  CAS  Google Scholar 

  13. B.I. Salem, O.M. Hemeda, S.F. Mansour, and M.A. Hamad, Electrical Properties and Positron Annihilation Studies for LaxCoFe2−xO4, J. Appl. Phys. A, 2018, 124(9), p 621

    Article  Google Scholar 

  14. A.M. Samy, A.A. Sattar, and I.H. Afify, Effect of Substitution with Potassium and Chromium Oxides on the Magnetic and Electrical Properties of Li-Ferrite, J. Alloys Compd., 2010, 505, p 297

    Article  CAS  Google Scholar 

  15. N. Rezlscu, E. Rezlescu, C. Pasnicu, and M.L. Craus, Effects of the Rare-Earth Ions on Some Properties of a Nickel-Zinc Ferrite, J. Phys.: Condens. Matter, 1994, 6, p 5707

    Google Scholar 

  16. H. Yang, Z. Wang, L. Song, M. Zhao, J. Wang, and H. Luo, A Study on the Coercivity and Magnetic Anisotropy of the Lithium Ferrite Nano-crystallite, J. Phys. D Appl. Phys., 1996, 29, p 2574

    Article  CAS  Google Scholar 

  17. H.M. El-sayed, A.M. Samy, and A.A. Sattar, Infra-red and Magnetic Studies of Nb-Doped Li-Ferrites, Phys. stat. sol., 2004, 201(9), p 297

    Article  Google Scholar 

  18. A.A. Sattar and A.M. Samy, Effect of Sm Substitution on the Magnetic and Electrical Properties of Cu-Zn Ferrites, J. Mater. Sci., 2002, 37, p 4499

    Article  CAS  Google Scholar 

  19. G. Bulai, L. Diamandescu, I. Dumitru, S. Gurlui, M. Feder, and O.F. Caltun, Effect of Rare Earth Substitution in Cobalt Ferrite Bulk Materials, J. Magnetism and Magnetic Materials, 2015, 390, p 123

    Article  CAS  Google Scholar 

  20. G. Dascalu, T. Popescu, M. Feder, and O.F. Caltun, Structural, electric and magnetic properties of CoFe1.8RE0.2O4 (RE = Dy, Gd, La) bulk materials, J. Magn. Magn. Mater., 2013, 333, p 69

    Article  CAS  Google Scholar 

  21. Y. Zhang and D. Wen, Infrared Emission Properties of RE (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb and Dy) and Mn Co-doped Co0.6Zn0.4Fe2O4 Ferrites, Mater. Chem. Phys., 2012, 131, p 575

    Article  CAS  Google Scholar 

  22. M.T. Rahman, M. Vargas, and C.V. Ramana, Structural Characteristics, Electrical Conduction and Dielectric Properties of Gadolinium Substituted Cobalt Ferrite, J. Alloys Compd., 2014, 617, p 547

    Article  CAS  Google Scholar 

  23. A.A. Sattar, H.M. El-Sayed, and W.R. Agami, Physical and Magnetic Properties of Calcium-Substituted Li-Zn Ferrite, J. Mater. Eng. Perform., 2007, 16(5), p 573

    Article  CAS  Google Scholar 

  24. A.M. Samy, H.M. El-Sayed, and A.A. Sattar, The Influence of Nd Oxide Substitution on Magnetic and Electrical Properties of Cu-Zn Ferrite, Phys. Stat. Sol. (a), 2003, 200(2), p 401

    Article  CAS  Google Scholar 

  25. O.M. Hemeda, K.R. Mahmoud, and T. Sharshar, Structure, Electric Properties and Positron Annihilation Studies of CuZnFe2O4 Doped with BaTiO3, Eur. Phys. J. Plus, 2014, 129(8), p 173

    Article  Google Scholar 

  26. A.M. Samy, E. Gomaa, and N. Mostafa, Study the Properties of Cu-Zn Ferrite Substituted with Rare Earth Ions by Positron Annihilation Analysis, Open Ceram. Sci. J., 2009, 1, p 1

    Google Scholar 

  27. P. Hautojarvi, C.I. Corbel, A. Dupasquier, and A.P. Mills, Ed., Positron Spectroscopy of Solids, IOS Press, Amsterdam, 1995

    Google Scholar 

  28. E.H. Aly and A.M. Samy, A Study of Some Properties for Substituted Li-Ferrite Using Positron Annihilation Lifetime Technique, Results Phys., 2015, 5, p 80

    Article  Google Scholar 

  29. A. Somoza, Status of Positron Annihilation Studies of Age Hardening in Aluminum Alloys, Mater. Sci. Forum, 2001, 363, p 9

    Article  Google Scholar 

  30. A.M. Samy, N. Mostafa, and E. Gomaa, Effect of Rare Earth Substitutions on Some Physical Properties of Mn-Zn Ferrite Studied by Positron Annihilation Lifetime Spectroscopy, J. Appl. Surf. Sci., 2006, 252, p 3323

    Article  CAS  Google Scholar 

  31. W.D. Kigery, H.K. Bowen, and D.R. Uhlmann, Introduction of Ceramics, Wiley, New York, 1996

    Google Scholar 

  32. S. Chikazumi and H. Stanley, Physics of Magnetism, Wiley, New York, 1966

    Google Scholar 

  33. S.A. Poltinnikov, Some Magnetic Properties of Nickel-Cadmium Ferrite, Sov. Phys. Solid State, 1966, 8, p 1144

    Google Scholar 

  34. P. Hautojarvi, Positrons in Solids, Springer, Berlin, 1979

    Book  Google Scholar 

  35. Y. Dong, L.Y. Xiong, and C.W. Lung, Positron Annihilation at Grain Boundaries in Zn-22 wt% Al Alloy, J. Phys.: Condens. Matter, 1991, 3, p p3155

    Google Scholar 

  36. M.K. Das, A. Al-Momin, and A.K.M.A. Hossain, in 10th International Conference on Electrical and Computer Engineering, 20–22 December, Dhaka, Bangladesh (2018)

Download references

Acknowledgments

The authors would like to express their deepest thanks to Prince Sattam bin Abdulaziz University, Wadi Addawasir, Physics Department, College of Arts and Science & Prof. Reinhard Krause-Rehberg for providing the positron experiments in the Martin-Luther-University Halle—Wittenberg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Samy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samy, A.M., Aly, E.H. Effects of Interdomain and Intradomain Pores of Cu-Zn Ferrite Substituted with Nd Investigated Using Positron Annihilation Lifetime Technique. J. of Materi Eng and Perform 30, 1530–1534 (2021). https://doi.org/10.1007/s11665-020-05432-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05432-2

Keywords

Navigation