S. Dadbakhsh, R. Mertens, L. Hao, J.V. Humbeeck, and J.P. Kruth, Selective Laser Melting to Manufacture “In Situ” Metal Matrix Composites: A review, Adv. Eng. Mater., 2019, 21, p 1801244. https://doi.org/10.1002/adem.201801244
CAS
Article
Google Scholar
J.P. Kruth, L. Froyen, J.V. Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, Selective Laser Melting of Iron-based Powder, J. Mater. Process. Technol., 2004, 149, p 616–622. https://doi.org/10.1016/j.jmatprotec.2003.11.051
CAS
Article
Google Scholar
J.P. Kruth, G. Levy, F. Klocke, and T.H.C. Childs, Consolidation Phenomena in Laser and Powder-bed Based Layered Manufacturing, CIRP Ann., 2007, 56, p 730–759. https://doi.org/10.1016/j.cirp.2007.10.004
Article
Google Scholar
J. Zhang, B. Song, Q. Wei, D. Bourell, and Y. Shi, A Review of Selective Laser Melting of Aluminum Alloys: Processing, Microstructure, Property and Developing Trends, J. Mater. Sci. Technol., 2019, 35, p 270–284. https://doi.org/10.1016/j.jmst.2018.09.004
Article
Google Scholar
H.K. Rafi, N.V. Karthik, H. Gong, T.L. Starr, and B.E. Stucker, Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting, J. Mater. Eng. Perform., 2013, 22, p 3872–3883. https://doi.org/10.1007/s11665-013-0658-0
CAS
Article
Google Scholar
B. Song, S. Dong, P. Coddet, H. Liao, and C. Coddet, Fabrication of NiCr Alloy Parts by Selective Laser Melting: Columnar Microstructure and Anisotropic Mechanical Behavior, Mater. Des., 2014, 53, p 1–7. https://doi.org/10.1016/j.matdes.2013.07.010
CAS
Article
Google Scholar
S.A.M. Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, and C. Charitidis, Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities, Mater. Today, 2018, 21(1), p 22–37. https://doi.org/10.1016/j.mattod.2017.07.001
Article
Google Scholar
C. Wang, X.P. Tan, Z. Du, S. Chandra, Z. Sun, C.W.J. Lim, S.B. Tor, C.S. Lim, and C.H. Wong, Additive Manufacturing of NiTi Shape Memory Alloys Using Pre-Mixed Powders, J. Mater. Process. Technol., 2019, 271, p 152–161. https://doi.org/10.1016/j.jmatprotec.2019.03.025
CAS
Article
Google Scholar
B. Zhang, J. Chen, and C. Coddet, Microstructure and Transformation Behavior of In-situ Shape Memory Alloys by Selective Laser Melting Ti–Ni Mixed Powder, J. Mater. Sci. Technol., 2013, 29, p 863–867. https://doi.org/10.1016/j.jmst.2013.05.006
CAS
Article
Google Scholar
K. Guan, Z. Wang, M. Gao, X. Li, and X. Zeng, Effects of Processing Parameters on Tensile Properties of Selective Laser Melted 304 Stainless Steel, Mater. Des., 2013, 50, p 581–586. https://doi.org/10.1016/j.matdes.2013.03.056
CAS
Article
Google Scholar
L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan, and P.W. Shindo, Microstructures and Properties of 17-4 PH Stainless Steel Fabricated by Selective Laser Melting, J. Mater. Res. Technol., 2012, 1, p 167–177. https://doi.org/10.1016/S2238-7854(12)70029-7
CAS
Article
Google Scholar
C.C. Ng, M.M. Savalani, M.L. Lau, and H.C. Man, Microstructure and Mechanical Properties of Selective Laser Melted Magnesium, Appl. Surf. Sci., 2011, 257, p 7447–7454. https://doi.org/10.1016/j.apsusc.2011.03.004
CAS
Article
Google Scholar
M. Gieseke, C. Noelke, S. Kaierle, V. Wesling, and H. Haferkamp, Selective Laser Melting of Magnesium and Magnesium Alloys BT—Magnesium Technology 213. N. Hort, S.N. Mathaudhu, N.R. Neelameggham, and M. Alderman, Eds., Springer, Cham, 2016, p 65–68. https://doi.org/10.1007/978-3-319-48150-0_11
Chapter
Google Scholar
X.P. Li, X.J. Wang, M. Saunders, A. Suvorova, L.C. Zhang, Y.J. Liu, M.H. Fang, Z.H. Huang, and T.B. Sercombe, A Selective Laser Melting and Solution Heat Treatment Refined Al–12Si Alloy with a Controllable Ultrafine Eutectic Microstructure and 25% Tensile Ductility, Acta Mater., 2015, 95, p 74–82. https://doi.org/10.1016/j.actamat.2015.05.017
CAS
Article
Google Scholar
K. Kempen, L. Thijs, J. Van Humbeeck, and J.-P. Kruth, Processing AlSi10Mg by Selective Laser Melting: Parameter Optimisation and Material Characterisation, Mater. Sci. Technol., 2015, 31, p 917–923. https://doi.org/10.1179/1743284714Y.0000000702
CAS
Article
Google Scholar
H. Yu, J. Yang, J. Yin, Z. Wang, and X. Zeng, Comparison on Mechanical Anisotropies of Selective Laser Melted Ti–6Al–4V Alloy and 304 Stainless Steel, Mater. Sci. Eng. A, 2017, 695, p 92–100. https://doi.org/10.1016/j.msea.2017.04.031
CAS
Article
Google Scholar
H. Attar, S. Ehtemam-Haghighi, D. Kent, and M.S. Dargusch, Recent Developments and Opportunities in Additive Manufacturing of Titanium-Based Matrix Composites: A Review, Int. J. Mach. Tools Manuf., 2018, 133, p 85–102. https://doi.org/10.1016/j.ijmachtools.2018.06.003
Article
Google Scholar
Z. Wang, K. Guan, M. Gao, X. Li, X. Chen, and X. Zeng, The Microstructure and Mechanical Properties of Deposited-IN718 by Selective Laser Melting, J. Alloys Compd., 2012, 513, p 518–523. https://doi.org/10.1016/j.jallcom.2011.10.107
CAS
Article
Google Scholar
T.D. McLouth, G.E. Bean, D.B. Witkin, S.D. Sitzman, P.M. Adams, D.N. Patel, W. Park, J.-M. Yang, and R.J. Zaldivar, The Effect of Laser Focus Shift on Microstructural Variation of Inconel 718 Produced by Selective Laser Melting, Mater. Des., 2018, 149, p 205–213. https://doi.org/10.1016/j.matdes.2018.04.019
CAS
Article
Google Scholar
L. Wu, H. Zhu, X. Gai, and Y. Wang, Evaluation of the Mechanical Properties and Porcelain Bond Strength of Cobalt–Chromium Dental Alloy Fabricated by Selective Laser Melting, J. Prosthet. Dent., 2014, 111, p 51–55. https://doi.org/10.1016/j.prosdent.2013.09.011
CAS
Article
Google Scholar
P. Fox, S. Pogson, C.J. Sutcliffe, and E. Jones, Interface Interactions Between Porous Titanium/Tantalum Coatings, Produced by Selective Laser Melting (SLM), on A Cobalt–chromium Alloy, Surf. Coat. Technol., 2008, 202, p 5001–5007. https://doi.org/10.1016/j.surfcoat.2008.05.003
CAS
Article
Google Scholar
G.M. Karthik, P. Sathiyamoorthi, A. Zargaran, J.M. Park, P. Asghari-Rad, S. Son, S.H. Park, and H.S. Kim, Novel Precipitation and Enhanced Tensile Properties in Selective Laser Melted Cu-Sn Alloy, Materialia, 2020, 13, p 100861. https://doi.org/10.1016/j.mtla.2020.100861
CAS
Article
Google Scholar
D.Q. Zhang, Z.H. Liu, Q.Z. Cai, J.H. Liu, and C.K. Chua, Influence of Ni Content on Microstructure of W–Ni Alloy Produced by Selective Laser Melting, Int. J. Refract. Met. Hard Mater., 2014, 45, p 15–22. https://doi.org/10.1016/j.ijrmhm.2014.02.007
CAS
Article
Google Scholar
S. Li, H. Hassanin, M.M. Attallah, N.J.E. Adkins, and K. Essa, The Development of TiNi-based Negative Poisson’s Ratio Structure Using Selective Laser Melting, Acta Mater., 2016, 105, p 75–83. https://doi.org/10.1016/j.actamat.2015.12.017
CAS
Article
Google Scholar
H. Attar, K.G. Prashanth, L.C. Zhang, M. Calin, I.V. Okulov, S. Scudino, C. Yang, and J. Eckert, Effect of Powder Particle Shape on the Properties of in Situ Ti–TiB Composite Materials Produced by Selective Laser Melting, J. Mater. Sci. Technol., 2015, 31, p 1001–1005. https://doi.org/10.1016/j.jmst.2015.08.007
CAS
Article
Google Scholar
H.J. Niu and I.T.H. Chang, Selective Laser Sintering of Gas and Water Atomized High Speed Steel Powders, Scr. Mater., 1999, 41, p 25–30. https://doi.org/10.1016/s1359-6462(99)00089-5
CAS
Article
Google Scholar
J. Mazumder, D. Dutta, N. Kikuchi, and A. Ghosh, Closed Loop Direct Metal Deposition: Art to Part, Opt. Lasers Eng., 2000, 34, p 397–414. https://doi.org/10.1016/S0143-8166(00)00072-5
Article
Google Scholar
D. Bourell, B. Stucker, A.B. Spierings, N. Herres, and G. Levy, Influence of the Particle Size Distribution on Surface Quality and Mechanical Properties in AM Steel Parts, Rapid Prototyping J., 2011, 17, p 195–202. https://doi.org/10.1108/13552541111124770
Article
Google Scholar
A. Spierings and G. Levy, Comparison of Density of Stainless Steel 316L Parts Produced with Selective Laser Melting Using Different Powder Grades, in 20th Annu. Int. Solid Free. Fabr. Symp. SFF 2009, 2009.
B. Liu, R. Wildman, C. Tuck, I. Ashcroft, and R. Hague, Investigaztion the Effect of Particle Size Distribution on Processing Parameters Optimisation in Selective Laser Melting Process, in 22nd Annu. Int. Solid Free. Fabr. Symp.—An Addit. Manuf. Conf. SFF 2011, 2011.
H. Gu, H. Gong, J. j. Dilip, D. Pal, A. Hicks, H. Doak, and B. Stucker, Effects of Powder Variation on the Microstructure and Tensile Strength of Ti6Al4V Parts Fabricated by Selective Laser Melting, 2014.
L. Technology, Vacuum vs Non-vacuum Melted Gas Atomised Powders, LPW Technology, CASE STUDY, 09, 2017.
J. Wang, X.L. Zhou, J. Li, M. Brochu, and Y.F. Zhao, Microstructures and Properties of SLM-Manufactured Cu–15Ni–8Sn Alloy, Addit. Manuf., 2020, 31, p 100921. https://doi.org/10.1016/j.addma.2019.100921
CAS
Article
Google Scholar
S. Dadbakhsh, M. Speirs, J.P. Kruth, and J. Van Humbeeck, Influence of SLM on Shape Memory and Compression Behaviour of NiTi Scaffolds, CIRP Ann., 2015, 64, p 209–212. https://doi.org/10.1016/j.cirp.2015.04.039
Article
Google Scholar
W. Shi, P. Wang, Y. Liu, Y. Hou, and G. Han, Properties of 316L Formed by a 400 W Power Laser Selective Laser Melting with 250 μm Layer Thickness, Powder Technol., 2020, 360, p 151–164. https://doi.org/10.1016/j.powtec.2019.09.059
CAS
Article
Google Scholar
Z. Wang, Z. Xiao, Y. Tse, C. Huang, and W. Zhang, Optimization of Processing Parameters and Establishment of a Relationship between Microstructure and Mechanical Properties of SLM titanium Alloy, Opt. Laser Technol., 2019, 112, p 159–167. https://doi.org/10.1016/j.optlastec.2018.11.014
CAS
Article
Google Scholar
S. Liu, H. Zhu, G. Peng, J. Yin, and X. Zeng, Microstructure Prediction of Selective Laser Melting AlSi10Mg Using Finite Element Analysis, Mater. Des., 2018, 142, p 319–328. https://doi.org/10.1016/j.matdes.2018.01.022
CAS
Article
Google Scholar
Y. Gao, D. Zhang, M. Cao, R. Chen, Z. Feng, R. Poprawe, J.H. Schleifenbaum, and S. Ziegler, Effect of δ Phase on High Temperature Mechanical Performances of Inconel 718 Fabricated with SLM Process, Mater. Sci. Eng. A, 2019, 767, p 138327. https://doi.org/10.1016/j.msea.2019.138327
CAS
Article
Google Scholar
M. Peter and J.P. Kruth, Residual Stresses in Selective Laser Sintering and Selective Laser Melting, Rapid Prototyping J., 2006, 12, p 254–265. https://doi.org/10.1108/13552540610707013
Article
Google Scholar
W.H. Yu, S.L. Sing, C.K. Chua, C.N. Kuo, and X.L. Tian, Particle-reinforced Metal Matrix Nanocomposites Fabricated by Selective Laser Melting: A State of the Art Review, Prog. Mater. Sci., 2019, 104, p 330–379. https://doi.org/10.1016/j.pmatsci.2019.04.006
CAS
Article
Google Scholar
J. Ma, J. Zhang, W. Liu, and Z. Shen, Suppressing Pore-boundary Separation during Spark Plasma Sintering of Tungsten, J. Nucl. Mater., 2013, 438, p 199–203. https://doi.org/10.1016/j.jnucmat.2013.03.042
CAS
Article
Google Scholar
Y. Liu, Y. Yang, S. Mai, D. Wang, and C. Song, Investigation into Spatter Behavior during Selective Laser Melting of AISI 316L Stainless Steel Powder, Mater. Des., 2015, 87, p 797–806. https://doi.org/10.1016/j.matdes.2015.08.086
CAS
Article
Google Scholar
M. Markl and C. Körner, Multiscale Modeling of Powder Bed–based Additive Manufacturing, Ann. Rev. Mater. Res., 2016, 46, p 93–123. https://doi.org/10.1146/annurev-matsci-070115-032158
CAS
Article
Google Scholar
F. Verhaeghe, T. Craeghs, J. Heulens, and L. Pandelaers, A Pragmatic Model for Selective Laser Melting with Evaporation, Acta Mater., 2009, 57, p 6006–6012. https://doi.org/10.1016/j.actamat.2009.08.027
CAS
Article
Google Scholar
A. Masmoudi, R. Bolot, and C. Coddet, Investigation of the Laser–Powder–Atmosphere Interaction Zone during the Selective Laser Melting Process, J. Mater. Process. Technol., 2015, 225, p 122–132. https://doi.org/10.1016/j.jmatprotec.2015.05.008
Article
Google Scholar
Y.C. Wu, C.H. San, C.H. Chang, H.J. Lin, R. Marwan, S. Baba, and W.S. Hwang, Numerical Modeling of Melt-pool Behavior in Selective Laser Melting with Random Powder Distribution and Experimental Validation, J. Mater. Process. Technol., 2018, 254, p 72–78. https://doi.org/10.1016/j.jmatprotec.2017.11.032
Article
Google Scholar
W. Kurz, C. Bezencon, and M. Gäumann, Columnar to Equiaxed Transition in Solidification Processing, Sci. Technol. Adv. Mater., 2001, 2, p 185. https://doi.org/10.1016/S1468-6996(01)00047-X
CAS
Article
Google Scholar
Q. Zhang, H. Xue, Q. Tang, S. Pan, M. Rettenmayr, and M. Zhu, Microstructural Evolution during Temperature Gradient Zone Melting: Cellular Automaton Simulation and Experiment, Comput. Mater. Sci., 2018, 146, p 204–212. https://doi.org/10.1016/j.commatsci.2018.01.032
CAS
Article
Google Scholar
K.G. Prashanth and J. Eckert, Formation of Metastable Cellular Microstructures in Selective Laser Melted Alloys, J. Alloys Compd., 2017, 707, p 7–34. https://doi.org/10.1016/j.jallcom.2016.12.209
CAS
Article
Google Scholar
M. Bernhard, Additive Manufacturing Technologies—Rapid Prototyping to Direct Digital Manufacturing, Assem. Autom., 2012, https://doi.org/10.1108/aa.2012.03332baa.010
Article
Google Scholar
W. Di, Y. Liu, Y. Yang, and D. Xiao, Theoretical and Experimental Study on Surface Roughness of 316L Stainless Steel Metal Parts Obtained through Selective Laser Melting, Rapid Prototyping J., 2016, 22, p 706–716. https://doi.org/10.1108/RPJ-06-2015-0078
Article
Google Scholar
G. Strano, L. Hao, R.M. Everson, and K.E. Evans, Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting, J. Mater. Process. Technol., 2013, 213, p 589–597. https://doi.org/10.1016/j.jmatprotec.2012.11.011
CAS
Article
Google Scholar
Y. Yang, Accuracy and Density Optimization in Directly Fabricating Customized Orthodontic Production by Selective Laser Melting, Rapid Prototyping J., 2012, 18, p 482–489. https://doi.org/10.1108/13552541211272027
Article
Google Scholar
W. Di, Y. Yongqiang, S. Xubin, and C. Yonghua, Study on Energy Input and its Influences on Single-track, Multi-track, and Multi-Layer in SLM, Int. J. Adv. Manuf. Technol., 2012, 58, p 1189–1199. https://doi.org/10.1007/s00170-011-3443-y
Article
Google Scholar
Z. Sun, X. Tan, S.B. Tor, and W.Y. Yeong, Selective Laser Melting of Stainless Steel 316L with Low Porosity and High Build Rates, Mater. Des., 2016, 104, p 197–204. https://doi.org/10.1016/j.matdes.2016.05.035
CAS
Article
Google Scholar
S. Wang, Y. Liu, W. Shi, B. Qi, J. Yang, F. Zhang, D. Han, and Y. Ma, Research on High Layer Thickness Fabricated of 316L by Selective Laser Melting, Materials, 2017, 10, p 1055. https://doi.org/10.3390/ma10091055
CAS
Article
Google Scholar
Y. Zhong, L. Liu, S. Wikman, D. Cui, and Z. Shen, Intragranular Cellular Segregation Network Structure Strengthening 316L Stainless Steel Prepared by Selective Laser Melting, J. Nucl. Mater., 2016, 470, p 170–178. https://doi.org/10.1016/j.jnucmat.2015.12.034
CAS
Article
Google Scholar
I. Simonovski and L. Cizelj, Computational Multiscale Modeling of Intergranular Cracking, J. Nucl. Mater., 2011, 414, p 243–250. https://doi.org/10.1016/j.jnucmat.2011.03.051
CAS
Article
Google Scholar
I. Simonovski and L. Cizelj, Cohesive Element Approach to Grain Level Modelling of Intergranular Cracking, Eng. Fract. Mech., 2013, 110, p 364–377. https://doi.org/10.1016/j.engfracmech.2013.05.011
Article
Google Scholar
A. Ahmadi, R. Mirzaeifar, N.S. Moghaddam, A.S. Turabi, H.E. Karaca, and M. Elahinia, Effect of Manufacturing Parameters on Mechanical Properties of 316L Stainless Steel Parts Fabricated by Selective Laser Melting: A Computational Framework, Mater. Des., 2016, 112, p 328–338. https://doi.org/10.1016/j.matdes.2016.09.043
CAS
Article
Google Scholar
D. Wang, C. Song, Y. Yang, and Y. Bai, Investigation of Crystal Growth Mechanism during Selective Laser Melting and Mechanical Property Characterization of 316L Stainless Steel Parts, Mater. Des., 2016, 100, p 291–299. https://doi.org/10.1016/j.matdes.2016.03.111
CAS
Article
Google Scholar
J. Suryawanshi, K.G. Prashanth, and U. Ramamurty, Mechanical Behavior of Selective Laser Melted 316L Stainless Steel, Mater. Sci. Eng. A, 2017, 696, p 113–121. https://doi.org/10.1016/j.msea.2017.04.058
CAS
Article
Google Scholar
J.M. Jeon, J.M. Park, J.-H. Yu, J.G. Kim, Y. Seong, S.H. Park, and H.S. Kim, Effects of Microstructure and Internal Defects on Mechanical Anisotropy and Asymmetry of Selective Laser-Melted 316L Austenitic Stainless Steel, Mater. Sci. Eng. A, 2019, 763, p 138152. https://doi.org/10.1016/j.msea.2019.138152
CAS
Article
Google Scholar
Z. Zhang, B. Chu, L. Wang, and Z. Lu, Comprehensive Effects of Placement Orientation and Scanning Angle on Mechanical Properties and Behavior of 316L Stainless Steel Based on the Selective Laser Melting Process, J. Alloys Compd., 2019, https://doi.org/10.1016/j.jallcom.2019.03.082
Article
Google Scholar
T. Simson, A. Emmel, A. Dwars, and J. Böhm, Residual Stress Measurements on AISI 316L Samples Manufactured by Selective Laser Melting, Addit. Manuf., 2017, 17, p 183–189. https://doi.org/10.1016/j.addma.2017.07.007
CAS
Article
Google Scholar
A. Metals, Properties and Selection Stainless Steels, Tool Materials and Special-Purpose Metals, Metals Handbook, Vol. 3, ASM, Metals Park, 1980
Google Scholar
M.S.I.N. Kamariah, W.S.W. Harun, F. Ahmad, and F. Tarlochan, Mechanical Behaviours of Selective Laser Melting 316L Stainless Steel, J. Addit. Manuf. Adv. Mater., 2020, 1, p 1–18. https://journal.scientiaca.org/index.php/jams/article/view/55.
V. Sufiiarov, E. Borisov, I. Polozov, and D. Masaylo, Study of Microstructure and Properties of 316L Steel after Selective Laser Melting, 2016.
T. Larimian, M. Kannan, D. Grzesiak, and B. Al-Mangour, Effect of Energy Density and Scanning Strategy on Densification, Microstructure and Mechanical Properties of 316L Stainless Steel Processed via Selective Laser Melting, Mater. Sci. Eng. A, 2019, 770, p 138455. https://doi.org/10.1016/j.msea.2019.138455
CAS
Article
Google Scholar
O.O. Salman, C. Gammer, J. Eckert, M.Z. Salih, E.H. Abdulsalam, K.G. Prashanth, and S. Scudino, Selective Laser Melting of 316L Stainless Steel: Influence of TiB2 Addition on Microstructure and Mechanical Properties, Mater. Today Commun., 2019, 21, p 100615. https://doi.org/10.1016/j.mtcomm.2019.100615
CAS
Article
Google Scholar
S. Yin, X. Yan, R. Jenkins, and C. Chen, Hybrid Additive Manufacture of 316L Stainless Steel with Cold Spray and Selective Laser Melting: Microstructure and Mechanical Properties, J. Mater. Process. Technol., 2019, 273, p 116248. https://doi.org/10.1016/j.jmatprotec.2019.05.029. https://doi.org/10.1016/j.msea.2017.04.058.
P. Guo, B. Zou, C. Huang, and H. Gao, Study on Microstructure, Mechanical Properties and Machinability of Efficiently Additive Manufactured AISI 316L Stainless Steel by High-Power Direct Laser Deposition, J. Mater. Process. Technol., 2017, 240, p 12–22. https://doi.org/10.1016/j.jmatprotec.2016.09.005
CAS
Article
Google Scholar
R. Casati, J. Lemke, and M. Vedani, Microstructure and Fracture Behavior of 316L Austenitic Stainless Steel Produced by Selective Laser Melting, J. Mater. Sci. Technol., 2016, 32, p 738–744. https://doi.org/10.1016/j.jmst.2016.06.016
CAS
Article
Google Scholar
G. Sander, S. Thomas, V. Cruz, M. Jurg, N. Birbilis, X. Gao, M. Brameld, and C.R. Hutchinson, On the Corrosion and Metastable Pitting Characteristics of 316L Stainless Steel Produced by Selective Laser Melting, J. Electrochem. Soc., 2017, 164, p 250–257. https://doi.org/10.1149/2.0551706jes
CAS
Article
Google Scholar
Q. Chao, V. Cruz, S. Thomas, N. Birbilis, P. Collins, A. Taylor, P.D. Hodgson, and D. Fabijanic, On the Enhanced Corrosion Resistance of a Selective Laser Melted Austenitic Stainless Steel, Scr. Mater., 2017, 141, p 94–98. https://doi.org/10.1016/j.scriptamat.2017.07.037
CAS
Article
Google Scholar
A.B. Kale, B.K. Kim, D.I. Kim, E.G. Castle, M. Reece, and S.H. Choi, An Investigation of the Corrosion Behavior of 316L Stainless Steel Fabricated by SLM and SPS Techniques, Mater. Charact., 2020, 163, p 110204. https://doi.org/10.1016/j.matchar.2020.110204
CAS
Article
Google Scholar
D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng, and X. Li, Bio-functional and Anti-corrosive 3D Printing 316L Stainless Steel Fabricated by Selective Laser Melting, Mater. Des., 2018, 152, p 88–101. https://doi.org/10.1016/j.matdes.2018.04.058
CAS
Article
Google Scholar
M. Laleh, A.E. Hughes, W. Xu, I. Gibson, and M.Y. Tan, Unexpected Erosion-Corrosion Behaviour of 316L Stainless Steel Produced by Selective Laser Melting, Corrosion Sci., 2019, 155, p 67–74. https://doi.org/10.1016/j.corsci.2019.04.028
CAS
Article
Google Scholar
K. Lin, X. Li, H. Dong, S. Du, Y. Lu, X. Ji, and D. Gu, Surface Modification of 316 Stainless Steel with Platinum for the Application of Bipolar Plates in High Performance Proton Exchange Membrane Fuel Cells, Int. J. Hydrogen Energy, 2017, 42, p 2338–2348. https://doi.org/10.1016/j.ijhydene.2016.09.220
CAS
Article
Google Scholar
S. Lv, H. Tao, Y. Hong, Y. Zheng, C. Zhou, J. Zheng, and L. Zhang, Surface Treatment and Corrosion Behavior of 316L Stainless Steel Fabricated by Selective Laser Melting, Mater. Res. Express, 2019, 6, p 106518.
CAS
Article
Google Scholar
J. Chen, Y. Yang, C. Song, M. Zhang, S. Wu, and D. Wang, Interfacial Microstructure and Mechanical Properties of 316L/CuSn10 Multi-material Bimetallic Structure Fabricated by Selective Laser Melting, Mater. Sci. Eng. A, 2019, 752, p 75–85. https://doi.org/10.1016/j.msea.2019.02.097
CAS
Article
Google Scholar
Y. Lyu, J. Wang, Y. Wan, and Y. Chen, The Influence of Selective Laser Melting Process Parameters on the Property of TiAlN/TiN Multilayer Coating on the 316L Steel, Coatings, 2019, 9, p 377. https://doi.org/10.3390/coatings9060377
CAS
Article
Google Scholar
A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos, and W.E. King, An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel, Metall. Mater. Trans. A, 2014, 45, p 6260–6270. https://doi.org/10.1007/s11661-014-2549-x
CAS
Article
Google Scholar
A. Khorasani, I. Gibson, U.S. Awan, and A. Ghaderi, The Effect of SLM Process Parameters on Density, Hardness, Tensile Strength and Surface Quality of Ti–6Al–4V, Addit. Manuf., 2019, 25, p 176–186. https://doi.org/10.1016/j.addma.2018.09.002
CAS
Article
Google Scholar
J. Sun, Y. Yang, and D. Wang, Parametric Optimization of Selective Laser Melting for Forming Ti6Al4V Samples by Taguchi Method, Opt. Laser Technol., 2013, 49, p 118–124. https://doi.org/10.1016/j.optlastec.2012.12.002
CAS
Article
Google Scholar
P. Edwards and M. Ramulu, Fatigue Performance Evaluation of Selective Laser Melted Ti–6Al–4V, Mater. Sci. Eng. A, 2014, 598, p 327–337. https://doi.org/10.1016/j.msea.2014.01.041
CAS
Article
Google Scholar
P. Tao, H.X. Li, B.Y. Huang, Q.D. Hu, S.L. Gong, and Q.Y. Xu, Tensile Behavior of Ti–6Al–4V Alloy Fabricated by Selective Laser Melting: Effects of Microstructures and As-built Surface Quality, China Found., 2018, 15, p 243–252. https://doi.org/10.1007/s41230-018-8064-8
Article
Google Scholar
G. Kasperovich and J. Hausmann, Improvement of Fatigue Resistance and Ductility of TiAl6V4 Processed by Selective Laser Melting, J. Mater. Process. Technol., 2015, 220, p 202–214. https://doi.org/10.1016/j.jmatprotec.2015.01.025
CAS
Article
Google Scholar
S. Bagehorn, J. Wehr, and H.J. Maier, Application of Mechanical Surface Finishing Processes for Roughness Reduction and Fatigue Improvement of Additively Manufactured Ti–6Al–4V Parts, Int. J. Fatigue, 2017, 102, p 135–142. https://doi.org/10.1016/j.ijfatigue.2017.05.008
CAS
Article
Google Scholar
X. Lu, X. Lin, M. Chiumenti, M. Cervera, J. Li, L. Ma, L. Wei, Y. Hu, and W. Huang, Finite Element Analysis and Experimental Validation of the Thermo Mechanical Behavior in Laser Solid Forming of Ti–6Al–4V, Addit. Manuf., 2018, 21, p 30–40. https://doi.org/10.1016/j.addma.2018.02.003
CAS
Article
Google Scholar
P. Tao, J. Zhong, H. Li, Q. Hu, S. Gong, and Q. Xu, Microstructure, Mechanical Properties, and Constitutive Models for Ti–6Al–4V Alloy Fabricated by Selective Laser Melting (SLM), Metals, 2019, 9, p 447. https://doi.org/10.3390/met9040447
CAS
Article
Google Scholar
S.S. Al-Bermani, M.L. Blackmore, W. Zhang, and I. Todd, The Origin of Microstructural Diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti–6Al–4V, Metall. Mater. Trans. A, 2010, 41, p 3422–3434. https://doi.org/10.1007/s11661-010-0397-x
CAS
Article
Google Scholar
H. Gong, K. Rafi, H. Gu, G.D. Janaki Ram, T. Starr, and B. Stucker, Influence of Defects on Mechanical Properties of Ti–6Al–4V Components Produced by Selective Laser Melting and Electron Beam Melting, Mater. Des., 2015, 86, p 545–554. https://doi.org/10.1016/j.matdes.2015.07.147
CAS
Article
Google Scholar
M. Simonelli, Y.Y. Tse, and C. Tuck, Effect of the Build Orientation on the Mechanical Properties and Fracture Modes of SLM Ti–6Al–4V, Mater. Sci. Eng. A, 2014, 616, p 1–11. https://doi.org/10.1016/j.msea.2014.07.086
CAS
Article
Google Scholar
W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, and M. Qian, Additive Manufacturing of Strong and Ductile Ti–6Al–4V by Selective Laser Melting via in Situ Martensite Decomposition, Acta Mater., 2015, 85, p 74–84. https://doi.org/10.1016/j.actamat.2014.11.028
CAS
Article
Google Scholar
W. Xu, E.W. Lui, A. Pateras, M. Qian, and M. Brandt, In Situ Tailoring Microstructure in Additively Manufactured Ti–6Al–4V for Superior Mechanical Performance, Acta Mater., 2017, 125, p 390–400. https://doi.org/10.1016/j.actamat.2016.12.027
CAS
Article
Google Scholar
B. He, K. Chang, W. Wu, and C. Zhang, The Formation Mechanism of TiC Reinforcement and Improved Tensile Strength in Additive Manufactured Ti Matrix Nanocomposite, Vacuum, 2017, 143, p 23–27. https://doi.org/10.1016/j.vacuum.2017.05.029
CAS
Article
Google Scholar
H.L. Li, D.C. Jia, Z.H. Yang, X.M. Duan, D.L. Cai, and Y. Zhou, Research Progress on Selective Laser Melting 3D Printing of Titanium Alloys and Titanium Matrix Composites, Mater. Sci. Technol., 2019, 27, p 1–15. https://doi.org/10.11951/j.issn.1005-0299.20180110
Article
Google Scholar
H. Attar, M. Bönisch, M. Calin, L.-C. Zhang, S. Scudino, and J. Eckert, Selective Laser Melting of in Situ Titanium–Titanium Boride Composites: Processing Microstructure and Mechanical Properties, Acta Mater., 2014, 76, p 13–22. https://doi.org/10.1016/j.actamat.2014.05.022
CAS
Article
Google Scholar
D. Gu, Y.C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe, Nanocrystalline TiC Reinforced Ti Matrix Bulk-form Nanocomposites by Selective Laser Melting (SLM): Densification, Growth Mechanism and Wear Behavior, Compos. Sci. Technol., 2011, 71, p 1612–1620. https://doi.org/10.1016/j.compscitech.2011.07.010
CAS
Article
Google Scholar
D. Gu, G. Meng, C. Li, W. Meiners, and R. Poprawe, Selective Laser Melting of TiC/Ti Bulk Nanocomposites: Influence of Nanoscale Reinforcement, Scr. Mater., 2012, 67, p 185–188. https://doi.org/10.1016/j.scriptamat.2012.04.013
CAS
Article
Google Scholar
X.P. Li, J. Van Humbeeck, and J.P. Kruth, Selective Laser Melting of Weak-textured Commercially Pure Titanium with High Strength and Ductility: A Study from Laser Power Perspective, Mater. Des., 2017, 116, p 352–358. https://doi.org/10.1016/j.matdes.2016.12.019
CAS
Article
Google Scholar
E. Chlebus, B. Kuźnicka, T. Kurzynowski, and B. Dybała, Microstructure and Mechanical Behaviour of Ti–6Al–7Nb Alloy Produced by Selective Laser Melting, Mater. Charact., 2011, 62, p 488–495. https://doi.org/10.1016/j.matchar.2011.03.006
CAS
Article
Google Scholar
H. Schwab, F. Palm, U. Kühn, and J. Eckert, Microstructure and Mechanical Properties of the Near-beta Titanium Alloy Ti-5553 Processed by Selective Laser Melting, Mater. Des., 2016, 105, p 75–80. https://doi.org/10.1016/j.matdes.2016.04.103
CAS
Article
Google Scholar
L. Yan, J. Yu, Y. Zhong, Y. Gu, Y. Ma, W. Li, J. Yan, Y. Ge, J. Yin, Y. Luo, A. Mirzasadeghi, and Y. Yuan, Influence of Scanning on Nano Crystalline β-Ti Alloys Fabricated by Selective Laser Melting and Their Applications in Biomedical Science, J. Nanosci. Nanotechnol., 2020, 20, p 1605–1612. https://doi.org/10.1166/jnn.2020.17340
CAS
Article
Google Scholar
Q. Liu and C. Qiu, Variant Selection of α Precipitation in a Beta Titanium Alloy during Selective Laser Melting and Its Influence on Mechanical Properties, Mater. Sci. Eng. A, 2020, 784, p 139336. https://doi.org/10.1016/j.msea.2020.139336
CAS
Article
Google Scholar
S.E. Haghighi, H. Lu, G. Jian, G. Cao, D. Habibi, and L.C. Zhang, Effect of α″ Martensite on the Microstructure and Mechanical Properties of Beta–type Ti–Fe–Ta Alloys, Mater. Des., 2015, 76, p 47–54. https://doi.org/10.1016/j.matdes.2015.03.028
CAS
Article
Google Scholar
Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, and L.C. Zhang, Microstructure, Defects and Mechanical Behavior of Beta–type Titanium Porous Structures Manufactured by Electron Beam Melting and Selective Laser Melting, Acta Mater., 2016, 113, p 56–67. https://doi.org/10.1016/j.actamat.2016.04.029
CAS
Article
Google Scholar
W. Chen, C. Chen, X. Zi, X. Cheng, X. Zhang, Y.C. Lin, and K. Zhou, Controlling the Microstructure and Mechanical Properties of a Metastable β Titanium Alloy by Selective Laser Melting, Mater. Sci. Eng. A, 2018, 726, p 240–250. https://doi.org/10.1016/j.msea.2018.04.087
CAS
Article
Google Scholar
ASTM, Standard Specification for Titanium–6Aluminum–4Vanadium Alloy Castings for Surgical Implants (UNS R56406): F1108-14[S], ASTM International, West Conshohocken, 2014
Google Scholar
ASTM, Standard Specification for Wrought Titanium–6Aluminum–4Vanadium Alloy for Surgical Implant Applications (UNS R56400): F1472-14[S], ASTM International, West Conshohocken, 2014
Google Scholar
V. Cain, L. Thijs, J.V. Humbeeck, B.V. Hoorewederd, and R. Knutsena, Crack Propagation and Fracture Toughness of Ti6Al4V Alloy Produced by Selective Laser Melting, Addit. Manuf., 2015, 5, p 68–76. https://doi.org/10.1016/j.addma.2014.12.006
CAS
Article
Google Scholar
M. Simonelli, Y. Tsey, and C. Tuck, Effect of the Build Orientation on the Mechanical Properties and Fracture Modes of SLM Ti–6Al–4V, Mater. Sci. Eng. A, 2014, 616, p 1–11. https://doi.org/10.1016/j.msea.2014.07.086
CAS
Article
Google Scholar
B. Vrancken, L. Thijs, J.-P. Kruth, and J. Van Humbeeck, Heat Treatment of Ti6Al4V Produced by Selective Laser Melting: Microstructure and Mechanical Properties, J. Alloys Compd., 2012, 541, p 177–185. https://doi.org/10.1016/j.jallcom.2012.07.022
CAS
Article
Google Scholar
E. Wycisk, S. Siddique, D. Herzog, F. Walther, and C. Emmelmann, Fatigue Performance of Laser Additive Manufactured Ti–6Al–4V in Very High Cycle Fatigue Regime up to 109 Cycles, Front. Mater, 2015, 2, p 72. https://doi.org/10.3389/fmats.2015.00072
Article
Google Scholar
Y.J. Liu, Y.S. Zhang, and L.C. Zhang, Transformation-induced Plasticity and High Strength in Beta Titanium Alloy Manufactured by Selective Laser Melting, Materialia, 2019, 6, p 100299. https://doi.org/10.1016/j.mtla.2019.100299
CAS
Article
Google Scholar
A. Zafari and K. Xia, Superior Titanium from Hybridised Microstructures—A new Strategy for Future Alloys, Scr. Mater., 2019, 173, p 61–65. https://doi.org/10.1016/j.scriptamat.2019.07.031
CAS
Article
Google Scholar
D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn, and M.A. Easton, Additive Manufacturing of Ultrafine-grained High-Strength Titanium Alloys, Nature, 2019, 576, p 91–95. https://doi.org/10.1038/s41586-019-1783-1
CAS
Article
Google Scholar
J. Wang, Y. Liu, P. Qin, S.X. Liang, T.B. Sercombe, and L.C. Zhang, Selective Laser Melting of Ti–35Nb Composite from Elemental Powder Mixture: Microstructure, Mechanical Behavior and Corrosion Behavior, Mater. Sci. Eng. A, 2019, 760, p 214–224. https://doi.org/10.1016/j.msea.2019.06.001
CAS
Article
Google Scholar
N. Dai, L.C. Zhang, J. Zhang, X. Zhang, Q. Ni, Y. Chen, M. Wu, and C. Yang, Distinction in Corrosion Resistance of Selective Laser Melted Ti–6Al–4V Alloy on Different Planes, Corros. Sci., 2016, 111, p 703–710. https://doi.org/10.1016/j.corsci.2016.06.009
CAS
Article
Google Scholar
R. Wauthle, B. Vrancken, B. Beynaerts, K. Jorissen, J. Schrooten, J.P. Kruth, and J.V. Humbeeck, Effects of Build Orientation and Heat Treatment on the Microstructure and Mechanical Properties of Selective Laser Melted Ti6Al4V Lattice Structures, Addit. Manuf., 2015, 5, p 77–84. https://doi.org/10.1016/j.addma.2014.12.008
CAS
Article
Google Scholar
P. Qin, Y. Liu, T.B. Sercombe, Y. Li, C. Zhang, C. Cao, H. Sun, and L. Zhang, Improved Corrosion Resistance on Selective Laser Melting Produced Ti–5Cu Alloy after Heat Treatment, ACS Biomater. Sci. Eng., 2018, 4, p 2633–2642. https://doi.org/10.1021/acsbiomaterials.8b00319
CAS
Article
Google Scholar
D. Buchbinder, W. Meiners, K. Wissenbach, and R. Poprawe, Selective Laser Melting of Aluminum Die-cast Alloy—Correlations between Process Parameters, Solidification Conditions, and Resulting Mechanical Properties, J. Laser Appl., 2015, 27, p S29205. https://doi.org/10.2351/1.4906389
Article
Google Scholar
K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, and J.P. Kruth, Process Optimization and Microstructural Analysis for Selective Laser Melting of AlSi10Mg, in 22nd Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, 2011, 22, p 484–495. https://www.researchgate.net/publication/262698754.
D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, and J. Bültmann, High Power Selective Laser Melting (HP SLM) of Aluminum Parts, Phys. Procedia, 2011, 12, p 271–278. https://doi.org/10.1016/j.phpro.2011.03.035
CAS
Article
Google Scholar
L. Thijs, K. Kempen, J.-P. Kruth, and J. Van Humbeeck, Fine-structured Aluminium Products with Controllable Texture by Selective Laser Melting of Pre-alloyed AlSi10Mg Powder, Acta Mater., 2013, 61, p 1809–1819. https://doi.org/10.1016/j.actamat.2012.11.052
CAS
Article
Google Scholar
E.O. Olakanmi, Selective Laser Sintering/Melting (SLS/SLM) of Pure Al, Al–Mg, and Al–Si Powders: Effect of Processing Conditions and Powder Properties, J. Mater. Process. Technol., 2013, 213, p 1387–1405. https://doi.org/10.1016/j.jmatprotec.2013.03.009
CAS
Article
Google Scholar
X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang, J. Vleugels, J. Van Humbeeck, and J.P. Kruth, Selective Laser Melting of Nano-TiB2 Decorated AlSi10Mg Alloy with High Fracture Strength and Ductility, Acta Mater., 2017, 129, p 183–193. https://doi.org/10.1016/j.actamat.2017.02.062
CAS
Article
Google Scholar
J. Fiocchi, A. Tuissi, P. Bassani, and C.A. Biffi, Low Temperature Annealing Dedicated to AlSi10Mg Selective Laser Melting Products, J. Alloys Compd., 2017, 695, p 3402–3409. https://doi.org/10.1016/j.jallcom.2016.12.019
CAS
Article
Google Scholar
S.D. McDonald, K. Nogita, and A.K. Dahle, Eutectic Nucleation in Al–Si Alloys, Acta Mater., 2004, 52, p 4273–4280. https://doi.org/10.1016/j.actamat.2004.05.043
CAS
Article
Google Scholar
L. Wang, G. Zhang, L. Zhu, and H. Wang, Biocrust Wetting Induced Change in Soil Surface Roughness as Influenced by Biocrust Type, Cover. Wet. Patterns Geoderma, 2017, 306, p 1–9. https://doi.org/10.1016/j.geoderma.2017.06.032
Article
Google Scholar
E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder, Additive Manufactured AlSi10Mg Samples Using Selective Laser Melting (SLM): Microstructure, High Cycle Fatigue, and Fracture Behavior, Mater. Des., 2012, 34, p 159–169. https://doi.org/10.1016/j.matdes.2011.07.067
CAS
Article
Google Scholar
W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, and Y. Shi, Effect of Heat Treatment on AlSi10Mg Alloy Fabricated by Selective Laser Melting: Microstructure Evolution, Mechanical Properties and Fracture Mechanism, Mater. Sci. Eng. A, 2016, 663, p 116–125. https://doi.org/10.1016/j.msea.2016.03.088
CAS
Article
Google Scholar
M. Fousová, D. Dvorský, A. Michalcová, and D. Vojtěch, Changes in the Microstructure and Mechanical Properties of Additively Manufactured AlSi10Mg Alloy after Exposure to Elevated Temperatures, Mater. Charact., 2018, 137, p 119–126. https://doi.org/10.1016/j.matchar.2018.01.028
CAS
Article
Google Scholar
K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löber, Z. Wang, and J. Eckert, Microstructure and Mechanical Properties of Al–12Si Produced by Selective Laser Melting: Effect of Heat Treatment, Mater. Sci. Technol., 2014, 590, p 153–160. https://doi.org/10.1016/j.msea.2013.10.023
CAS
Article
Google Scholar
Y. Bai, Y. Yang, Z. Xiao, M. Zhang, and D. Wang, Process Optimization and Mechanical Property Evolution of AlSiMg0.75 by Selective Laser Melting, Mater. Des., 2018, 140, p 257–266. https://doi.org/10.1016/j.matdes.2017.11.045
CAS
Article
Google Scholar
T. Kimura and T. Nakamoto, Microstructures and Mechanical Properties of A356 (AlSi7Mg0.3) Aluminum Alloy Fabricated by Selective Laser Melting, Mater. Des., 2016, 89, p 1294–1301. https://doi.org/10.1016/j.matdes.2015.10.065
CAS
Article
Google Scholar
K.G. Prashanth, S. Scudino, and J. Eckert, Defining the Tensile Properties of Al–12Si Parts Produced by Selective Laser Melting, Acta Mater., 2017, 126, p 25–35. https://doi.org/10.1016/j.actamat.2016.12.044
CAS
Article
Google Scholar
D. Gu, C. Ma, M. Xia, D. Dai, and Q. Shi, A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing, Engineering, 2017, 3, p 675–684. https://doi.org/10.1016/J.ENG.2017.05.011
CAS
Article
Google Scholar
M. Tang and P.C. Pistorius, Oxides, Porosity and Fatigue Performance of AlSi10Mg Parts Produced by Selective Laser Melting, Int. J. Fatigue, 2017, 94, p 192–201. https://doi.org/10.1016/j.ijfatigue.2016.06.002
CAS
Article
Google Scholar
H. Tan, D. Hao, K. Al-Hamdani, F. Zhang, Z. Xu, and A.T. Clare, Direct Metal Deposition of TiB2/AlSi10Mg Composites Using Satellited Powders, Mater. Lett., 2018, 214, p 123–126. https://doi.org/10.1016/j.matlet.2017.11.121
CAS
Article
Google Scholar
H. Wang and D. Gu, Nanometric TiC Reinforced AlSi10Mg Nanocomposites: Powder Preparation by High-energy Ball Milling and Consolidation by Selective Laser Melting, J. Compos. Mater., 2014, 49, p 1639–1651. https://doi.org/10.1177/0021998314538870
CAS
Article
Google Scholar
G. Zhang, C. Chen, X. Wang, P. Wang, X. Zhang, X. Gan, and K. Zhou, Additive Manufacturing of Fine-structured Copper Alloy by Selective Laser Melting of Pre-Alloyed Cu–15Ni–8Sn Powder, Int. J. Adv. Manuf. Technol., 2018, 96, p 4223–4230. https://doi.org/10.1007/s00170-018-1891-3
Article
Google Scholar
S. Zhang, H. Zhu, Z. Hu, X. Zeng, and F. Zhong, Selective Laser Melting of Cu–10Zn Alloy Powder Using High Laser Power, Powder Technol., 2018, 342, p 613–620. https://doi.org/10.1016/j.powtec.2018.10.002
CAS
Article
Google Scholar
Z. Mao, D.Z. Zhang, J. Jiang, G. Fu, and P. Zhang, Processing Optimisation, Mechanical Properties and Microstructural Evolution During Selective Laser Melting of Cu–15Sn High-tin Bronze, Mater. Sci. Eng. A, 2018, 721, p 125–134. https://doi.org/10.1016/j.msea.2018.02.051
CAS
Article
Google Scholar
P.V. Anthony, W.C. Austin, P. Gregory, B. Martin, W. Masashi, and Z.M. Wojciech, Mechanical Properties and Microstructural Characterization of Cu–4.3 Pct Sn Fabricated by Selective Laser Melting, Metall. Mater. Trans. A, 2017, 48, p 178–187. https://doi.org/10.1007/s11661-016-3779-x
CAS
Article
Google Scholar
S. Uchida, T. Kimura, T. Nakamoto, T. Ozaki, T. Miki, M. Takemura, Y. Oka, and R. Tsubota, Microstructures and Electrical and Mechanical Properties of Cu–Cr Alloys Fabricated by Selective Laser Melting, Mater. Des., 2019, 175, p 107815. https://doi.org/10.1016/j.matdes.2019.107815
CAS
Article
Google Scholar
D. Palousek, M. Kocica, L. Pantelejev, L. Klakurkova, L. Celko, D. Koutny, and J. Kaiser, SLM Process Parameters Development of Cu-Alloy Cu7.2Ni1.8Si1Cr, Rapid Prototyping J., 2019, 25, p 266–276. https://doi.org/10.1108/RPJ-06-2017-0116
Article
Google Scholar
A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, and A. Orlov, Microstructure and Mechanical Properties of Additive Manufactured Copper Alloy, Mater. Lett., 2016, 179, p 38–41. https://doi.org/10.1016/j.matlet.2016.05.064
CAS
Article
Google Scholar
A. Leon, A. Shirizly, and E. Aghion, Corrosion Behavior of AlSi10Mg Alloy Produced by Additive Manufacturing (AM) vs. Its Counterpart Gravity Cast Alloy, Metals, 2016, 6, p 148. https://doi.org/10.3390/met6070148
Article
Google Scholar
X. Xing, X. Duan, T. Jiang, J. Wang, and F. Jiang, Ultrasonic Peening Treatment Used to Improve Stress Corrosion Resistance of AlSi10Mg Components Fabricated Using Selective Laser Melting, Metals, 2019, 9, p 103. https://doi.org/10.3390/met9010103
CAS
Article
Google Scholar
Y. Yang, Y. Chen, J. Zhang, X. Gu, P. Qin, N. Dai, X. Li, J.P. Kruth, and L.C. Zhang, Improved Corrosion Behavior of Ultrafine-grained Eutectic Al–12Si Alloy Produced by Selective Laser Melting, Mater. Des., 2018, 146, p 239–248. https://doi.org/10.1016/j.matdes.2018.03.025
CAS
Article
Google Scholar
S. Scudino, C. Unterdörfer, K.G. Prashanth, H. Attar, N. Ellendt, V. Uhlenwinkel, and J. Eckert, Additive Manufacturing of Cu–10Sn Bronze, Mater. Lett., 2015, 156, p 202–204. https://doi.org/10.1016/j.matlet.2015.05.076
CAS
Article
Google Scholar
T.Q. Tran, A. Chinnappan, J. Lee, H.L. Nguyen, L.T. Tran, G. Wang, V.V. Kumar, W.A.D.M. Jayathilaka, D. Ji, M. Doddamani, and S. Ramakrishna, 3D Printing of Highly Pure Copper, Metals, 2019, 9, p 756. https://doi.org/10.3390/met9070756
CAS
Article
Google Scholar
S.D. Jadhav, SLM of Copper and Copper Based Alloys, Arenberg Youngsters Seminar 16, Date: 2018/12/12–2018/12/12, Auditorium Arenberg Castle, KU Leuven, 2018
Google Scholar
T. Trosch, J. Strößner, R. Völkl, and U. Glatzel, Microstructure and Mechanical Properties of Selective Laser Melted Inconel 718 Compared to Forging and Casting, Mater. Lett., 2016, 164, p 428–431. https://doi.org/10.1016/j.matlet.2015.10.136
CAS
Article
Google Scholar
S. Li, Q. Wei, Y. Shi, Z. Zhu, and D. Zhang, Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting, J. Mater. Sci. Technol., 2015, 31, p 946–952. https://doi.org/10.1016/j.jmst.2014.09.020
CAS
Article
Google Scholar
J. Strößner, M. Terock, and U. Glatzel, Mechanical and Microstructural Investigation of Nickel-Based Superalloy IN718 Manufactured by Selective Laser Melting (SLM), Adv. Eng. Mater., 2015, 17, p 1099–1105. https://doi.org/10.1002/adem.201500158
CAS
Article
Google Scholar
M. Pröbstle, S. Neumeier, J. Hopfenmüller, L.P. Freund, T. Niendorf, D. Schwarze, and M. Göken, Superior Creep Strength of a Nickel-based Superalloy Produced by Selective Laser Melting, Mater. Sci. Eng. A, 2016, 674, p 299–307. https://doi.org/10.1016/j.msea.2016.07.061
CAS
Article
Google Scholar
H. Zhang, D. Gu, L. Xi, H. Zhang, M. Xi, and C. Ma, Anisotropic Corrosion Resistance of TiC Reinforced Ni-based Composites Fabricated by Selective Laser Melting, J. Mater. Sci. Technol., 2019, 35, p 1128–1136.
CAS
Article
Google Scholar
C. Pei, D. Shi, H. Yuan, and H. Li, Assessment of Mechanical Properties and Fatigue Performance of a Selective Laser Melted Nickel-base Superalloy Inconel 718, Mater. Sci. Eng. A, 2019, 759, p 278–287.
CAS
Article
Google Scholar
X. Yao, S.K. Moon, B.Y. Lee, and G. Bi, Effects of Heat Treatment on Microstructures and Tensile Properties of IN718/TiC Nanocomposite Fabricated by Selective Laser Melting, Int. J. Precis. Eng. Manuf., 2017, 18, p 1693–1701. https://doi.org/10.1007/s12541-017-0197-y
Article
Google Scholar
H. Zhang, D. Gu, C. Ma, M. Guo, J. Yang, and R. Wang, Effect of Post Heat Treatment on Microstructure and Mechanical Properties of Ni-based Composites by Selective Laser Melting, Mater. Sci. Technol., 2019, 765, p 138294. https://doi.org/10.1016/j.msea.2019.138294
CAS
Article
Google Scholar
E. Chlebus, K. Gruber, B. Kuźnicka, J. Kurzac, and T. Kurzynowski, Effect of Heat Treatment on the Microstructure and Mechanical Properties of Inconel 718 Processed by Selective Laser Melting, Mater. Sci. Eng. A, 2015, 639, p 647–655. https://doi.org/10.1016/j.msea.2015.05.035
CAS
Article
Google Scholar
R. Wang, G. Zhu, C. Yang, W. Wang, and D. W, A. Dong, D. Shu, L. Zhang, B. Sun, , Nano-size Carbide-reinforced Ni Matrix Composite Prepared by Selective Laser Melting, Nano Mater. Sci., 2019, https://doi.org/10.1016/j.nanoms.2019.11.003
Article
Google Scholar
X. Ni, D. Kong, L. Zhang, C. Dong, J. Song, and W. Wu, Effect of Process Parameters on the Mechanical Properties of Hastelloy X Alloy Fabricated by Selective Laser Melting, J. Mater. Eng. Perform., 2019, 28, p 5533–5540. https://doi.org/10.1007/s11665-019-04275-w
CAS
Article
Google Scholar
O.E. Ozbulut, S. Hurlebaus, and R. Desroches, Seismic Response Control Using Shape Memory Alloys: A Review, J. Intell. Mater. Syst. Struct., 2011, 22, p 1531–1549. https://doi.org/10.1177/1045389X11411220
Article
Google Scholar
M. Elahinia, N.S. Moghaddama, A. Amerinatanzi, S. Saedi, G.P. Toker, H. Karaca, G.S. Bigelow, and O. Benafan, Additive Manufacturing of NiTiHf High Temperature Shape Memory Alloy, Scr. Mater., 2018, 145, p 90–94. https://doi.org/10.1016/j.scriptamat.2017.10.016
CAS
Article
Google Scholar
H. Meier, C. Haberland, J. Frenzel, and R. Zarnetta, Selective Laser Melting of NiTi Shape Memory Components, Innov. Dev. Des. Manufa. Adv. Res. Virtual Rapid Prototyping, 2009, https://doi.org/10.1201/9780203859476.ch35
Article
Google Scholar
M.H. Elahinia, M. Hashemi, M. Tabesh, and S.B. Bhaduri, Manufacturing and Processing of NiTi Implants: A Review, Prog. Mater. Sci., 2012, 57, p 911–946. https://doi.org/10.1016/j.pmatsci.2011.11.001
CAS
Article
Google Scholar
S. Dadbakhsh, M. Speirs, J.P. Kruth, J. Schrooten, J. Luyten, and J. Van Humbeeck, Effect of SLM Parameters on Transformation Temperatures of Shape Memory Nickel Titanium Parts, Adv. Eng. Mater., 2014, 16, p 1140–1146. https://doi.org/10.1002/adem.201300558
CAS
Article
Google Scholar
T. Bormann, R. Schumacher, B. Müller, M. Mertmann, and M. Wild, Tailoring Selective Laser Melting Process Parameters for NiTi Implants, J. Mater. Eng. Perform., 2012, 21, p 2519–2524. https://doi.org/10.1007/s11665-012-0318-9
CAS
Article
Google Scholar
Z.X. Khoo, J. An, C.K. Chua, Y.F. Shen, C.N. Kuo, and Y. Liu, Effect of Heat Treatment on Repetitively Scanned SLM NiTi Shape Memory Alloy, Materials, 2019, 12, p 77. https://doi.org/10.3390/ma12010077
CAS
Article
Google Scholar
Y. Liu, Y. Liu, and J.V. Humbeeck, Two-way Shape Memory Effect Developed by Martensite Deformation in NiTi, Acta Mater., 1999, 47, p 199–209. https://doi.org/10.1016/S1359-6454(98)00325-5
CAS
Article
Google Scholar
S. Dadbakhsh, B. Vrancken, J.P. Kruth, J. Luyten, and J. Van Humbeeck, Texture and Anisotropy in Selective Laser Melting of NiTi Alloy, Mater. Sci. Eng. A, 2016, 650, p 225–232. https://doi.org/10.1016/j.msea.2015.10.032
CAS
Article
Google Scholar
S. Dadbakhsh, M. Speirs, J. Van Humbeeck, and J.P. Kruth, Laser Additive Manufacturing of Bulk and Porous Shape-memory NiTi Alloys: From Processes to Potential Biomedical Applications, MRS Bull., 2016, 41, p 765–774. https://doi.org/10.1557/mrs.2016.209
CAS
Article
Google Scholar
S. Bernard, V.K. Balla, S. Bose, and A. Bandyopadhyay, Compression Fatigue Behavior of Laser Processed Porous NiTi Alloy, J. Mech. Behav. Biomed. Mater., 2012, 13, p 62–68. https://doi.org/10.1016/j.jmbbm.2012.04.010
CAS
Article
Google Scholar
J. Ma, B. Franco, G. Tapia, K. Karayagiz, L. Johnson, J. Liu, and A. Elwany, Spatial Control of Functional Response in 4D-printed Active Metallic Structures, Sci. Rep., 2017, 7, p 46707. https://doi.org/10.1038/srep46707
Article
Google Scholar
K.K. Alaneme, A.A. Sulaimon, and P.A. Olubambi, Mechanical and Corrosion Behaviour of Iron Modified Cu–Zn–Al Alloys, Acta Metall. Slov., 2013, 19, p 292–301. https://doi.org/10.12776/ams.v19i4.184
Article
Google Scholar
P. Gargarella, C.S. Kiminami, E.M. Mazzer, R.D. Cava, L.A. Basilio, C. Bolfarini, W.J. Botta, J. Eckert, T. Gustmann, and S. Pauly, Phase Formation, Thermal Stability and Mechanical Properties of a Cu–Al–Ni–Mn Shape Memory Alloy Prepared by Selective Laser Melting, Mater. Res., 2015, 18, p 35–38. https://doi.org/10.1590/1516-1439.338914
CAS
Article
Google Scholar
T. Gustmann, A. Neves, U. Kühn, P. Gargarella, C.S. Kiminami, C. Bolfarini, J. Eckert, and S. Pauly, Influence of Processing Parameters on the Fabrication of a Cu–Al–Ni–Mn Shape-memory Alloy by Selective Laser Melting, Addit. Manuf., 2016, 11, p 23–31. https://doi.org/10.1016/j.addma.2016.04.003
CAS
Article
Google Scholar
T. Gustmann, J.M. Dos Santos, P. Gargarella, U. Kühn, J. Van Humbeeck, and S. Pauly, Properties of Cu-based Shape-memory Alloys Prepared by Selective Laser Melting, Shape Memory Superelasticity, 2017, 3, p 24–36. https://doi.org/10.1007/s40830-016-0088-6
Article
Google Scholar
T. Gustmann, H. Schwab, U. Kühn, and S. Pauly, Selective Laser Remelting of an Additively Manufactured Cu–Al–Ni–Mn Shape-memory Alloy, Mater. Des., 2018, 153, p 129–138. https://doi.org/10.1016/j.matdes.2018.05.010
CAS
Article
Google Scholar
Y. Yang, J.B. Zhan, B. Li, J.X. Lina, J.J. Gao, Z.Q. Zhang, L. Ren, P. Castany, and T. Gloriant, Laser Beam Energy Dependence of Martensitic Transformation in SLM Fabricated NiTi Shape Memory Alloy, Materialia, 2019, 6, p 100305. https://doi.org/10.1016/j.mtla.2019.100305
CAS
Article
Google Scholar
M.D. Hayat, G. Chen, N. Liu, S. Khan, H.P. Tang, and P. Cao, Physical and Tensile Properties of NiTi Alloy by Selective Electron Beam Melting, Key Eng. Mater., 2018, 770, p 148–154. https://doi.org/10.4028/www.scientific.net/KEM.770.148
Article
Google Scholar
H.Z. Lu, C. Yang, X. Luo, H.W. Ma, B. Song, Y.Y. Li, and L.C. Zhang, Ultrahigh-performance TiNi Shape Memory Alloy by 4D printing, Mater. Sci. Eng. A, 2019, 763, p 138166. https://doi.org/10.1016/j.msea.2019.138166
CAS
Article
Google Scholar
N.S. Moghaddam, S.E. Saghaian, A. Amerinatanzi, H. Ibrahim, P. Li, G.P. Toker, H.E. Karaca, and M. Elahinia, Anisotropic Tensile and Actuation Properties of NiTi Fabricated with Selective Laser Melting, Mater. Sci. Eng. A, 2018, 724, p 220–230. https://doi.org/10.1016/j.msea.2018.03.072
CAS
Article
Google Scholar
Y. Brif, M. Thomas, and I. Todd, The Use of High-entropy Alloys in Additive Manufacturing, Scr. Mater., 2015, 99, p 93–96. https://doi.org/10.1016/j.scriptamat.2014.1
CAS
Article
Google Scholar
F. Tian, L.K. Varga, N. Chen, J. Shen, and L. Vitos, Empirical Design of Single Phase High-entropy Alloys with High Hardness, Intermetallics, 2015, 58, p 1–6. https://doi.org/10.1016/j.intermet.2014.10.010
CAS
Article
Google Scholar
P.D. Niu, R.D. Li, T.C. Yuan, S.Y. Zhu, C. Chen, M.B. Wang, and L. Huang, Microstructures and Properties of an Equimolar AlCoCrFeNi High Entropy Alloy Printed by Selective Laser Melting, Intermetallics, 2019, 104, p 24–32. https://doi.org/10.1016/j.intermet.2018.10.018
CAS
Article
Google Scholar
J. Guo, M. Goh, Z. Zhu, X. Lee, M. Ling, S. Nai, and J. Wei, On the Machining of Selective Laser Melting CoCrFeMnNi High-entropy Alloy, Mater. Des., 2018, 153, p 211–220. https://doi.org/10.1016/j.matdes.2018.05.012
CAS
Article
Google Scholar
Z.P. Lu, H. Wang, M.W. Chen, I. Baker, J.W. Yeh, C.T. Liu, and T.G. Nieh, An Assessment on the Future Development of High-entropy Alloys: Summary from a Recent Work-shop, Intermetallics, 2015, 66, p 67–76. https://doi.org/10.1016/j.intermet.2015.06.021
CAS
Article
Google Scholar
S. Uporov, V. Bykov, S. Pryanichnikov, A. Shubin, and N. Uporova, Effect of Synthesis Route on Structure and Properties of AlCoCrFeNi High-entropy Alloy, Intermetallics, 2017, 83, p 1–8. https://doi.org/10.1016/j.intermet.2016.12.003
CAS
Article
Google Scholar
J.M. Park, J. Choe, J.G. Kim, J.W. Bae, J. Moon, S. Yang, K.T. Kim, J.H. Yu, and H.S. Kim, Superior Tensile Properties of 1% C–CoCrFeMnNi High-entropy Alloy Additively Manufactured by Selective Laser Melting, Mater. Res. Lett., 2020, 8, p 1–7. https://doi.org/10.1080/21663831.2019.1638844
CAS
Article
Google Scholar
J. Joseph, T. Jarvis, X. Wu, N. Stanford, P. Hodgson, and D.M. Fabijanic, Comparative Study of the Microstructures and Mechanical Properties of Direct Laser Fabricated and Arc-melted AlxCoCrFeNi High Entropy Alloys, Mater. Sci. Eng. A, 2015, 633, p 184–193. https://doi.org/10.1016/j.msea.2015.02.072
CAS
Article
Google Scholar
K. Sun, W. Peng, L. Yang, and L. Fang, Effect of SLM Processing Parameters on Microstructures and Mechanical Properties of Al0.5CoCrFeNi High Entropy Alloys, Metals, 2020, 10, p 292. https://doi.org/10.3390/met10020292
CAS
Article
Google Scholar
J. Li, Microstructure and Mechanical Behavior of AlCoCuFeNi High-entropy Alloy Fabricated by Selective Laser Melting, Beijing, in Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International, 2017, p 729–730.
R. Zhou, Y. Liu, C. Zhou, S. Li, W. Wu, M. Song, B. Liu, X. Liang, and P.K. Liaw, Microstructures and Mechanical Properties of C-containing FeCoCrNi High-entropy Alloy Fabricated by Selective Laser Melting, Intermetallics, 2018, 94, p 165–171. https://doi.org/10.1016/j.intermet.2018.01.002
CAS
Article
Google Scholar
J. Chen, Z. Yao, X. Wang, Y. Lu, X. Wang, Y. Liu, and X. Fan, Effect of C Content on Microstructure and Tensile Properties of As-cast CoCrFeMnNi High Entropy Alloy, Mater. Chem. Phys., 2017, 210, p 1–10. https://doi.org/10.1016/j.matchemphys.2017.08.011
CAS
Article
Google Scholar
N.D. Stepanov, N.Y. Yurchenko, M.A. Tikhonovsky, and G.A. Salishchev, Effect of Carbon Content and Annealing on Structure and Hardness of the CoCrFeNiMn-based High Entropy Alloys, J. Alloys Compd., 2016, 687, p 59–71. https://doi.org/10.1016/j.jallcom.2016.06.103
CAS
Article
Google Scholar
T. Fujieda, M. Chen, H. Shiratori, K. Kuwabara, K. Yamanaka, Y. Koizumi, A. Chiba, and S. Watanabe, Mechanical and Corrosion Properties of CoCrFeNiTi-based High-entropy Alloy Additive Manufactured Using Selective Laser Melting, Addit. Manuf., 2019, 25, p 412–420. https://doi.org/10.1016/j.addma.2018.10.023
CAS
Article
Google Scholar
H. Zhang, Y. Zhao, S. Huang, S. Zhu, F. Wang, and D. Li, Manufacturing and Analysis of High-performance Refractory High-entropy Alloy via Selective Laser Melting (SLM), Materials, 2019, 12, p 720. https://doi.org/10.3390/ma12050720
CAS
Article
Google Scholar