Skip to main content

Advertisement

Log in

Pressureless Sintering Kinetics of NiFe2O4 Ceramic Fabricated by Slip Casting

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, a systematic research is carried out to investigate the sintering kinetics of NiFe2O4 ceramic obtained by slip casting and pressureless sintering. The sintering shrinkage behaviors showed the linear shrinkage and linear shrinkage rate of the green body in the axial and radial directions, both increased with increasing sintering temperature, though the maximum linear shrinkage rate in the radial direction was acquired at a lower temperature (1280.7°C) than that in the axial direction (1305.4°C) for a denser compact. The temperature related to the maximum densification rate was about 1316.5°C while the relative density was around 72%. The characteristic sintering kinetics window exhibited that the sintering process could be typically divided into three stages. The sintering activation energy of the initial stage was 268.34 kJ mol−1, and the initial stage of the sintering process was controlled by both grain boundary diffusion and volume diffusion mechanisms. The grain growth kinetic analysis illustrated the grain growth exponent (n) reduced from 2.959 to 2.169 when the sintering temperature increased from 1300 to 1375°C, while the activation energy for grain growth decreased with both the increasing of sintering temperature and the shortening of holding time. It implied that the atomic diffusion process controlled the grain growth. In addition, it was observed that increases in the bending strength and elastic modulus reached its maximum value of 70.36 ± 1.03 MPa and 3.44 ± 0.53 GPa, respectively, mainly associated with the relatively dense microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Wang, J.J. Du, Y.H. Liu, and G.C. Yao, Effect of TiO2 Doping on the Sintering Process, Mechanical and Magnetic Properties of NiFe2O4 Ferrite Ceramics, Int. J. Appl. Ceram. Technol., 2015, 12(3), p 658–664

    Article  CAS  Google Scholar 

  2. K.E. Sickafus, J.M. Wills, and N.W. Grimes, Structure of Spinel, J. Am. Ceram. Soc., 1999, 82(12), p 3279–3292

    Article  CAS  Google Scholar 

  3. A.T. Nelson, J.T. White, D.A. Andersson, J.A. Aguiar, K.J. McClellan, D.D. Byler, M.P. Short, and C.R. Stanek, Thermal Expansion, Heat Capacity, and Thermal Conductivity of Nickel Ferrite (NiFe2O4), J. Am. Ceram. Soc., 2014, 97(5), p 1559–1565

    Article  CAS  Google Scholar 

  4. S. Briceño, W. Brämer-Escamilla, P. Silva, J. García, H. Del Castillo, M. Villarroel, J.P. Rodriguez, M.A. Ramos, R. Morales, and Y. Diaz, NiFe2O4/Activated Carbon Nanocomposite as Magnetic Material from Petcoke, J. Magn. Magn. Mater., 2014, 360, p 67–72

    Article  Google Scholar 

  5. V. Manikandan, J.C. Denardin, S. Vigniselvan, and R.S. Mane, Structural, Dielectric and Enhanced Soft Magnetic Properties of Lithium (Li) Substituted Nickel Ferrite (NiFe2O4) Nanoparticles, J. Magn. Magn. Mater., 2018, 465, p 634–639

    Article  CAS  Google Scholar 

  6. K. Kombaiah, J.J. Vijaya, L.J. Kennedy, and K. Kaviyarasu, Catalytic Studies of NiFe2O4 Nanoparticles Prepared by Conventional and Microwave Combustion Method, Mater. Chem. Phys., 2019, 221, p 11–28

    Article  CAS  Google Scholar 

  7. Y. Tang, C.H. Yang, Y.W. Yang, X.T. Yin, W.X. Que, and J.F. Zhu, Three Dimensional Hierarchical Network Structure of S-NiFe2O4 Modified Few-Layer Titanium Carbides (MXene) Flakes on Nickel Foam as a High Efficient Electrocatalyst for Oxygen Evolution, Electrochim. Acta, 2019, 296, p 762–770

    Article  CAS  Google Scholar 

  8. S.F. Zhang, W.H. Jiang, Y.W. Li, X.L. Yang, P. Sun, F.M. Liu, X. Yan, Y. Gao, X.S. Liang, J. Ma, and G.Y. Lu, Highly-Sensitivity Acetone Sensors based on Spinel-Type Oxide (NiFe2O4) through Optimization of Porous Structure, Sens. Actuators B, 2019, 291, p 266–274

    Article  CAS  Google Scholar 

  9. X.F. Wang, K.M. Sun, S.J. Li, X.Z. Song, L. Cheng, and W. Ma, Porous Javelin-Like NiFe2O4 Nanorods as n-Propanol Sensor with Ultrahigh-Performance, ChemistrySelect, 2018, 3(45), p 12871–12877

    Article  CAS  Google Scholar 

  10. D. Mandal, A. Gorai, and K. Mandal, Electromagnetic Wave Ttrapping in NiFe2O4 Nano-Hollow Spheres: An Efficient Microwave Absorber, J. Magn. Magn. Mater., 2019, 485, p 43–48

    Article  CAS  Google Scholar 

  11. X.C. Gao, J.Q. Bi, W.L. Wang, H.Z. Liu, Y.F. Chen, X.X. Hao, X.N. Sun, and R. Liu, Morphology-Controllable Synthesis of NiFe2O4 Growing on Graphene Nanosheets as Advanced Electrode Material for High Performance Supercapacitors, J. Alloys Compd., 2020, 826, p 154088 (1–10)

    Google Scholar 

  12. S.B. Bandgar, M.M. Vadiyar, Y.C. Ling, J.Y. Chang, S.H. Han, A.V. Ghule, and S.S. Kolekar, Metal Precursor Dependent Synthesis of NiFe2O4 Thin Films for High Performance Flexible Symmetric Supercapacitor, ACS Appl. Energy Mater., 2018, 1(2), p 638–648

    Article  CAS  Google Scholar 

  13. J.J. Du, Y.H. Liu, G.C. Yao, Z.S. Hua, X.L. Long, and B. Wang, Microstructure, Mechanical Properties, and Pyroconductivity of NiFe2O4 Composite Reinforced with ZrO2 Fibers, J. Mater. Eng. Perform., 2013, 22(6), p 1776–1782

    Article  CAS  Google Scholar 

  14. P. Zarrabian, M. Kalantar, and S.S. Ghasemi, Fabrication and Characterization of Nickel Ferrite Based Inert Anodes for Aluminum Electrolysis, J. Mater. Eng. Perform., 2014, 23(5), p 1656–1664

    Article  CAS  Google Scholar 

  15. D.W. Ni, K.B. Andersen, and V. Esposito, Sintering and Grain Growth Kinetics in La0.85Sr0.15MnO3-Ce0.9Gd0.1O1.95 (LSM-CGO) Porous Composite, J. Eur. Ceram. Soc., 2014, 34(15), p 3769–3778

    Article  CAS  Google Scholar 

  16. H.D. Wu, W. Liu, L.F. Lin, Y.H. Li, Z. Tian, G.L. Nie, D. An, H.Z. Li, C.Y. Wang, Z.P. Xie, and S.H. Wu, Sintering Kinetics Involving Densification and Grain Growth of 3D printed Ce–ZrO2/Al2O3, Mater. Chem. Phys., 2020, 239, p 122069 (1–6)

    Google Scholar 

  17. A. Talimian and D. Galusek, Aqueous Slip Casting of Translucent Magnesium Aluminate Spinel: Effects of Dispersant Concentration and Solid Loading, Ceram. Int., 2019, 45(8), p 10646–10653

    Article  CAS  Google Scholar 

  18. Y.H. Sun, W.H. Xiong, C.H. Li, and L. Yuan, Effect of Dispersant Concentration on Preparation of an Ultrahigh Density ZnO-Al2O3 Target by Slip Casting, J. Am. Ceram. Soc., 2009, 92(9), p 2168–2171

    Article  CAS  Google Scholar 

  19. K. Moritz, N. Gerlach, J. Hubálková, and C.G. Aneziris, Pressure Slip Ccasting of Coarse-Grained Alumina-Carbon Materials, Int. J. Appl. Ceram. Technol., 2019, 16(1), p 14–22

    Article  CAS  Google Scholar 

  20. Y. Liu, Y.C. Shu, X.Y. Zeng, B.S. Sun, P. Liang, Y. Zhang, C. Qiu, J.H. Yi, and J.L. He, Study on the Sintering Behavior and Characterization of the IGZO Ceramics by Slip Casting, Int. J. Appl. Ceram. Technol., 2019, 16(2), p 585–594

    Article  CAS  Google Scholar 

  21. X.N. Sun, H.K. Wu, G.Z. Zhu, Y.C. Shan, J.J. Xu, J.T. Li, and E.A. Olevsky, Direct Coarse Powder Aqueous Slip Casting and Pressureless Sintering of Highly Transparent AlON Ceramics, Ceram. Int., 2020, 46(4), p 4850–4856

    Article  CAS  Google Scholar 

  22. Z.G. Zhang, J.R. Xu, Z.K. Cao, and G.C. Yao, Fabrication of High-Density NiFe2O4 Ceramics by Slip Casting and Pressureless Sintering, Int. J. Appl. Ceram. Technol., 2020, 17(4), p 1811–1821

    Article  CAS  Google Scholar 

  23. Z.G. Zhang, G.C. Yao, X. Zhang, J.F. Ma, and H. Lin, Synthesis and Characterization of Nickel Ferrite Nanoparticles via Planetary Ball Milling Assisted Solid-State Reaction, Ceram. Int., 2015, 41(3 Part B), p 4523–4530

    Article  CAS  Google Scholar 

  24. S. Mitra, A.R. Kulkarni, and O. Prakash, Densification Behavior and Two Stage Master Sintering Curve in Lithium Sodium Niobate Ceramics, Ceram. Int., 2013, 39(S1), p S65–S68

    Article  CAS  Google Scholar 

  25. W. Liu, Z.P. Xie, and L. Cheng, Sintering Kinetics Window: An Approach to the Densification Process during the Preparation of Transparent Alumina, Adv. Appl. Ceram., 2015, 114(1), p 33–38

    Article  CAS  Google Scholar 

  26. D. An, W. Liu, Z.P. Xie, H.Z. Li, X.D. Luo, H.D. Wu, M.P. Huang, J.W. Liang, Z. Tian, and R.X. He, A Strategy for Defects Healing in 3D Printed Ceramic Compact via Cold Isostatic Pressing: Sintering Kinetic Window and Microstructure Evolution, J. Am. Ceram. Soc., 2018, 102(5), p 2263–2271

    Article  Google Scholar 

  27. M. Lakusta, I. Danilenko, G. Volkova, L. Loladze, V. Burkhovetskiy, O. Doroshkevich, I. Brykhanova, I. Popova, and T. Konstantinova, Sintering Kinetics of ZrO2 Nanopowders Modified by Group IV Elements, Int. J. Appl. Ceram. Technol., 2019, 16(4), p 1481–1492

    Article  CAS  Google Scholar 

  28. M.J. Bannister, Shape Sensitivity of Initial Sintering Equations, J. Am. Ceram. Soc., 1968, 51(10), p 548–553

    Article  CAS  Google Scholar 

  29. J.R. Keski and I.B. Cutler, Initial Sintering of MnXO-Al2O3, J. Am. Ceram. Soc., 1968, 51(8), p 440–444

    Article  CAS  Google Scholar 

  30. J.L. Woolfrey and M.J. Bannister, Nonisothermal Techniques for Studying Initial-Stage Sintering, J. Am. Ceram. Soc., 1972, 55(8), p 390–394

    Article  CAS  Google Scholar 

  31. Z.G. Zhang, X.T. Lu, and J.L. Liu, NiFe2O4 Ceramic U-shaped Sleeve Prepared by Slip Casting and Pressureless Sintering, J. Inorg. Mater., 2020, 35(6), p 661–668

    Google Scholar 

  32. T. Senda and R.C. Bradt, Grain Growth in Sintered ZnO and ZnO-Bi2O3 Ceramics, J. Am. Ceram. Soc., 1990, 73(1), p 106–114

    Article  CAS  Google Scholar 

  33. W.Y. Du, Y.L. Ai, W.H. Chen, W. He, J.J. Zhang, Y.Q. Fan, and Y.X. Gong, Grain Growth Kinetics and Growth Mechanism of Columnar Al2O3 Crystals in xNb2O5-7.5La2O3-Al2O3 Ceramic Composites, Ceram. Int., 2019, 45(6), p 6788–6794

    Article  CAS  Google Scholar 

  34. M. Vaidya, A. Anupam, J.V. Bharadwaj, C. Srivastava, and B.S. Murty, Grain Growth Kinetics in CoCrFeNi and CoCrFeMnNi High Entropy A Processed by Spark Plasma Sintering, J Alloys Compd., 2019, 791, p 1114–1121

    Article  CAS  Google Scholar 

  35. S.J. Guo, Powder Sintering Theory, Metallurgical Industry Press, Beijing, 1998

    Google Scholar 

  36. B. Wang, J.J. Du, Z. Fang, and P. Hu, Effect of TiO2 Addition on Grain Growth, Anodic Bubble Evolution and Anodic Overvoltage of NiFe2O4-Based Composite Inert Anodes, J. Mater. Eng. Perform., 2017, 26(11), p 5610–5619

    Article  CAS  Google Scholar 

  37. Y. Liu, Y.L. Ai, W. He, W.H. Chen, and J.J. Zhang, Grain Growth Kinetics in Microwave Sintered Graphene Platelets Reinforced ZrO2/Al2O3 Composites, Ceram. Int., 2018, 44(14), p 16421–16427

    Article  CAS  Google Scholar 

  38. D.C. Jia and G.M. Song, Properties of Inorganic Nonmetallic Materials, Science Press, Beijing, 2008

    Google Scholar 

Download references

Acknowledgments

Financial supports from the Fundamental Research Funds for the Central Universities (No. N182504015), Liaoning Revitalization Talents Program (No. XLYC1902097) and Program Liaoning Innovation Talents in University (No. LR2018011), were gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Cao, Z., Zu, G. et al. Pressureless Sintering Kinetics of NiFe2O4 Ceramic Fabricated by Slip Casting. J. of Materi Eng and Perform 29, 7899–7907 (2020). https://doi.org/10.1007/s11665-020-05313-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05313-8

Keywords

Navigation