Skip to main content

Advertisement

Log in

Microstructural and Mechanical Properties of Cu-Based Co-Mo-Reinforced Composites Produced by the Powder Metallurgy Method

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, 5, 10 and 15 wt.% commercial purity Co-Mo powders are added to Cu powders using the powder metallurgy method. The prepared powder mixtures are shaped under a pressure of 600 MPa in a uniaxial hydraulic a press and then sintered at 1000 °C for 30 min. Scanning electron microscopy is applied for microstructural analysis. In the microstructure analysis, it is seen that as the reinforcement ratio increases, the grain sizes increase, and it is evenly distributed in Cu. A wear test is then carried out. As a result of this test, the weight loss, friction coefficient change and wear diameter change results of the composites are obtained. Abrasion loads are applied at 15, 20 and 25 N for 4000 m. The samples manufactured for the tensile test are subjected to certain loads on a Shimadzu tensile device. As a result of the abrasion and tensile tests, it was determined that the sample reinforced with 5 wt.% Co-Mo has the best mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. Han, F.R. Xiao, W.J. Zou, and B. Liao, Influence of Hot Pressing Temperature on the Microstructure and Mechanical Properties of 75% Cu-25% Sn Alloy, Mater. Des., 2014, 53, p 38–42 ((in English))

    Article  CAS  Google Scholar 

  2. M. Moazami-Goudarzi and A. Nemati, Tribological Behavior of Self Lubricating Cu/MoS2 Composites Fabricated by Powder Metallurgy, Trans. Nonferrous Met. Soc. China, 2018, 28(5), p 946–956 ((in English))

    Article  CAS  Google Scholar 

  3. J.K. Xiao, W. Zhang, L.M. Liu, L. Zhang, and C. Zhang, Tribological Behavior of Copper-Molybdenum Disulfide Composites, Wear, 2017, 384, p 61–71 ((in English))

    Article  Google Scholar 

  4. M.D. Hayat, H. Singh, Z. He, and P. Cao, Titanium Metal Matrix Composites: An Overview, Compos. Part A Appl. Sci. Manuf., 2019, 121, p 418–438 ((in English))

    Article  CAS  Google Scholar 

  5. X. Zhou et al., 3D-İmaging of Selective Laser Melting Defects in a Co-Cr-Mo Alloy by Synchrotron Radiation Micro-CT, Acta Mater., 2015, 98, p 1–16 ((in English))

    Article  CAS  Google Scholar 

  6. X.W. Qiu, Microstructure and Properties of AlCrFeNiCoCu High Entropy Alloy Prepared by Powder Metallurgy, J. Alloys Compd., 2013, 555, p 246–249 ((in English))

    Article  CAS  Google Scholar 

  7. S. Dehlouz, A. Alhussein, F. Lacroix et al., Self-Combustion of Ti-C and Ti-Al Powder Mixture in a Nitrogen Atmosphere: Product Application as Reinforcement in Metal Matrix Composites, J. Mater. Eng. Perform., 2020, 29, p 1984–1994 ((in English))

    Article  CAS  Google Scholar 

  8. G. Rodríguez-Cabriales et al., Synthesis and Characterization of Al-Cu-Mg System Reinforced with Tungsten Carbide Through Powder Metallurgy, Mater. Today Commun., 2019, 22, p 100758 ((in English))

    Article  Google Scholar 

  9. I. Kirik, N. Ozdemir, and U. Caligulu, Effect of Particle Size and Volume Fraction of the Reinforcement on the Microstructure and Mechanical Properties of Friction Welded MMC to AA 6061 Aluminum Alloy, Kov. Mater., 2013, 51, p 221–227 ((in English))

    CAS  Google Scholar 

  10. M. Uzun, M.M. Munis, and U.A. Usca, Investigation of Microstructure and Hardness Properties of Cu Matrix Composite Materials Produced by Powder Metallurgy Using CrC Particle Reinforcements at Different Ratios, Sak. Univ. J. Sci., 2018, 22(2), p 495–501 ((in English))

    Google Scholar 

  11. T. Schubert, B. Trindade, T. Weißgärber, and B. Kieback, Interfacial Design of Cu-Based Composites Prepared by Powder Metallurgy for Heat Sink Applications, Mater. Sci. Eng., A, 2008, 475(1–2), p 39–44 ((in English))

    Article  Google Scholar 

  12. K. An, Pressure Assisted Master Sintering Surface of Co, Cu and Fe Powder Mixture, Powder Technol., 2013, 234, p 117–122 ((in English))

    Article  CAS  Google Scholar 

  13. M. Uzun and U.A. Usca, Effect of Cr Particulate Reinforcements in Different Ratios on Wear Performance and Mechanical Properties of Cu Matrix Composites, J. Braz. Soc. Mech. Sci. Eng., 2018, 40(4), p 2–9 ((in English))

    Article  Google Scholar 

  14. J. Shuai, L. Xiong, Z. Hou et al., Nickel-Coated Super-Aligned Carbon Nanotube Reinforced Copper Composite for Improved Strength and Conductivity, J. Mater. Eng. Perform., 2019, 28, p 4393–4402 ((in English))

    Article  CAS  Google Scholar 

  15. J. Chen et al., Fabrication and Mechanical Properties of AlCoNiCrFe High-Entropy Alloy Particle Reinforced Cu Matrix Composites, J. Alloys Compd., 2015, 649, p 630–634 ((in English))

    Article  CAS  Google Scholar 

  16. M. Uzun, M.M. Munis, and U.A. Usca, Different Ratios CrC Particle-Reinforced Cu Matrix Composite Materials and İnvestigation of Wear Performance, Int. J. Eng. Res. Appl., 2018, 8(7), p 1–7 ((in English))

    Google Scholar 

  17. I. Moravcik et al., Mechanical and Microstructural Characterization of Powder Metallurgy CoCrNi Medium Entropy Alloy, Mater. Sci. Eng., A, 2017, 701, p 370–380 ((in English))

    Article  CAS  Google Scholar 

  18. H.X. Zheng, J. Mentz, M. Bram, H.P. Buchkremer, and D. Stöver, Powder Metallurgical Production of TiNiNb and TiNiCu Shape Memory Alloys by Combination of Pre-alloyed and Elemental Powders, J. Alloys Compd., 2008, 463(1–2), p 250–256 ((in English))

    Article  CAS  Google Scholar 

  19. K.A. Nazari, A. Nouri, and T. Hilditch, Mechanical Properties and Microstructure of Powder Metallurgy Ti-xNb-yMo Alloys for İmplant Materials, Mater. Des., 2015, 88, p 1164–1174 ((in English))

    Article  CAS  Google Scholar 

  20. C. Aguilar et al., Fabrication of Nanocrystalline Alloys Cu-Cr-Mo Super Satured Solid Solution by Mechanical Alloying, Mater. Chem. Phys., 2014, 146(3), p 493–502 ((in English))

    Article  CAS  Google Scholar 

  21. H.M. Yehia, Microstructure, Physical, and Mechanical Properties of the Cu/(WC-TiC-Co) Nano-composites by the Electroless Coating and Powder Metallurgy Technique, J. Compos. Mater., 2019, 53(14), p 1963–1971 ((in English))

    Article  CAS  Google Scholar 

  22. Y. Lu, K. Sagara, Y. Matsuda, L. Hao, Y. Rong Jin, and H. Yoshida, Effect of Cu Powder Addition on Thermoelectric Properties of Cu/TiO 2-x Composites, Ceram. Int., 2013, 39(6), p 6689–6694 ((in English))

    Article  CAS  Google Scholar 

  23. S. Islak, U. Çalıgülü, H.R.H. Hraam, C. Özorak, and V. Koç, Electrical Conductivity, Microstructure and Wear Properties of Cu-Mo Coatings, Res. Eng. Struct. Mater., 2019, 5(2), p 137–146 ((in English))

    Google Scholar 

  24. M. López, R.V. Mangalaraja, and J.A. Jiménez, Microstructure and Magnetic Properties of Cu90-xCo10Nix-7.5% SmCo5 Composite Alloys Prepared by Mechanical Alloying and Hot Pressing, Powder Metall., 2017, 60(1), p 33–41 ((in English))

    Article  Google Scholar 

  25. M. Barekat, R. Shoja Razavi, and A. Ghasemi, Nd:YAG Laser Cladding of Co-Cr-Mo Alloy on γ-TiAl Substrate, Opt. Laser Technol., 2016, 80, p 145–152 ((in English))

    Article  CAS  Google Scholar 

  26. C.P. Samal, J.S. Parihar, and D. Chaira, The Effect of Milling and Sintering Techniques on Mechanical Properties of Cu-Graphite Metal Matrix Composite Prepared by Powder Metallurgy Route, J. Alloys Compd., 2013, 569, p 95–101 ((in English))

    Article  CAS  Google Scholar 

  27. O. Ozgun, İ. Dinler, and D. Chaira, Production and Characterization of WC-Reinforced Co-Based Superalloy Matrix Composites, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2018, 49(7), p 2977–2989 ((in English))

    Article  CAS  Google Scholar 

  28. B.R. Moharana, S.K. Sahu, S.K. Sahoo, and R. Bathe, Experimental İnvestigation on Mechanical and Microstructural Properties of AISI, 304 to Cu Joints by CO2 Laser, Int. J. Eng. Sci., 2016, 19(2), p 684–690 ((in English))

    Google Scholar 

  29. D.T. Dos Santos, A. Salemi, I. Cristofolini, and A. Molinari, The Tensile Properties of a Powder Metallurgy Cu–Mo–Ni Diffusion Bonded Steel Sintered at Different Temperatures, Mater. Sci. Eng., A, 2019, 759, p 715–724 ((in English))

    Article  Google Scholar 

  30. V.P. de Martínez, C. Aguilar, J. Marín, S. Ordoñez, and F. Castro, Mechanical Alloying of Cu-Mo Powder Mixtures and Thermodynamic Study of Solubility, Mater. Lett., 2007, 61(4–5), p 929–933 ((in English))

    Article  Google Scholar 

  31. V.V. Skorokhod, O.I. Getman, V.V. Panichkina, P.Y. Radchenko, O.I. Bykov, and A.V. Samelyuk, Mechanism for Improving the Mechanical Properties of Sintered Iron-Copper Composites Alloyed with Molybdenum, Powder Metall. Met. C+, 2017, 56, p 370–378 ((in English))

    Article  CAS  Google Scholar 

  32. X.L. Zhou, Y.H. Dong, X.Z. Hua, and Z.G. Ye, Effect of Fe on the Sintering and Thermal Properties of Mo-Cu Composites, Mater. Des., 2010, 31(3), p 1603–1606 ((in English))

    Article  CAS  Google Scholar 

  33. D.M. Sun, X.S. Jiang, H.L. Sun, T.F. Song, and Z.P. Luo, Microstructure and Mechanical Properties of Cu-ZTA Cermet Prepared by Vacuum Hot Pressing Sintering, Mater. Res. Express, 2020, 7(2), p 026530 ((in English))

    Article  CAS  Google Scholar 

  34. A. Slipenyuk, V. Kuprin, Y. Milman, J.E. Spowart, and D.B. Miracle, The Effect of Matrix to Reinforcement Particle Size Ratio (PSR) on the Microstructure and Mechanical Properties of a P/M Processed AlCuMn/SiCp MMC, Mater. Sci. Eng., A, 2004, 381(1–2), p 165–170 ((in English))

    Article  Google Scholar 

  35. M.I. Abd El Aal, Effect of High-Pressure Torsion Processing on the Microstructure Evolution and Mechanical Properties of Consolidated Micro Size Cu and Cu-SiC Powders, Adv. Powder Technol., 2017, 28(9), p 2135–2150 ((in English))

    Article  CAS  Google Scholar 

  36. H.O. Gulsoy, O. Ozgun, and S. Bilketay, Powder İnjection Molding of Stellite 6 Powder: Sintering, Microstructural and Mechanical Properties, Mater. Sci. Eng., A, 2016, 651, p 914–924 ((in English))

    Article  CAS  Google Scholar 

  37. H. Nautiyal, S. Kumari, U.S. Rao, R. Tyagi, and O.P. Khatri, Tribological Performance of Cu-rGO-MoS2 Nanocomposites Under Dry Sliding, Tribol. Lett., 2020, 68(1), p 29 ((in English))

    Article  CAS  Google Scholar 

Download references

Funding

No funds were used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emine Sap.

Ethics declarations

Conflict of interest

There is no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sap, E. Microstructural and Mechanical Properties of Cu-Based Co-Mo-Reinforced Composites Produced by the Powder Metallurgy Method. J. of Materi Eng and Perform 29, 8461–8472 (2020). https://doi.org/10.1007/s11665-020-05309-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05309-4

Keywords

Navigation