Skip to main content

A Fully Coupled Thermomechanical Damage Analysis of Hot Closed Die Forging Using Finite Element Modeling

Abstract

Advanced simulations are needed in the industry nowadays for reliable design of various machine parts. A complex computation is presented here to describe the whole manufacturing process, apart from the machining, of forged spur gear for a reverse transmission from a car gearbox. A coupled thermomechanical analysis was realized through the explicit finite element method, while the stress–strain analysis was conducted in all phases of the production with time- and temperature-dependent constitutive law. The influence of process parameters was assessed, and the magnitudes of forging load were compared for selected dimensions of intermediate product (blank) and its initial temperature (preheating). The numerical simulation was finished with the flash trimming along the circumference, so the temperature-dependent ductile failure criterion proposed by Johnson and Cook was accounted for as well.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. G. Surdon and J.L. Chenot, Finite Element Calculation of Three-Dimensional Hot Forging, Int. J. Numer. Methods Eng., 1987, 24(11), p 2107–2117

    Article  Google Scholar 

  2. J.H. Yoon and D.Y. Yang, A Three-Dimensional Rigid-Plastic Finite Element Analysis of Bevel Gear Forging by Using a Remeshing Technique, Int. J. Mech. Sci., 1990, 32(4), p 277–291

    Article  Google Scholar 

  3. N. Kim and S. Kobayashi, Preform Design in H-Shaped Cross Sectional Axisymmetric Forging by the Finite Element Method, Int. J. Mach. Tools Manuf., 1990, 30(2), p 243–268

    Article  Google Scholar 

  4. T. Coupez, N. Soyris, and J.-L. Chenot, 3-D Finite Element Modelling of the Forging Process with Automatic Remeshing, J. Mater. Process. Technol., 1991, 27(1-3), p 119–133

    Article  Google Scholar 

  5. D.Y. Yang, N.K. Lee, J.H. Yoon, J.L. Chenot, and N. Soyris, A Three-Dimensional Rigid-Plastic Finite Element Analysis of Spur Gear Forging Using the Modular Remeshing Technique, Proc. Inst. Mech. Eng. Part B, 1991, 205(2), p 111–121

    Article  Google Scholar 

  6. V. Szentmihali, K. Lange, Y. Tronel, J.-L. Chenot, and R. Ducloux, 3-D Finite-Element Simulation of the Cold Forging of Helical Gears, J. Mater. Process. Technol., 1994, 43(2-4), p 279–291

    Article  Google Scholar 

  7. M.L. Alves, J.M.C. Rodrigues, and P.A.F. Martins, Cold Forging of Gears: Experimental and Theoretical Investigation, Finite Elem. Anal. Des., 2001, 37(6-7), p 549–558

    Article  Google Scholar 

  8. J. Cai, T.A. Dean, and Z.M. Hu, Alternative Die Designs in Net-Shape Forging of Gears, J. Mater. Process. Technol., 2004, 150(1-2), p 48–55

    Article  Google Scholar 

  9. B.I. Tomov, V.I. Gagov, and R.H. Radev, Numerical Simulations of Hot Die Forging Processes Using Finite Element Method, J. Mater. Process. Technol., 2004, 153-154, p 352–358

    Article  Google Scholar 

  10. H.S. Jeong, J.R. Cho, and H.C. Park, Microstructure Prediction of Nimonic 80A for Large Exhaust Valve During Hot Closed Die Forging, J. Mater. Process. Technol., 2005, 162-163, p 504–511

    CAS  Article  Google Scholar 

  11. M. Skunca, P. Skakun, Z. Keran, L. Sidjanin, and M.D. Math, Relations Between Numerical Simulation and Experiment in Closed Die Forging of a Gear, J. Mater. Process. Technol., 2006, 177(1-3), p 256–260

    CAS  Article  Google Scholar 

  12. K.S. Park, Ch.J. VanTyne, and Y.H. Moon, Process Analysis of Multistage Forging by Using Finite Element Method, J. Mater. Process. Technol., 2007, 187-188, p 586–590

    CAS  Article  Google Scholar 

  13. B.-A. Behrens, Finite Element Analysis of Die Wear in Hot Forging Processes, CIRP Ann., 2008, 57(1), p 305–308

    Article  Google Scholar 

  14. M.H.A. Bonte, L. Fourment, T.-t. Do, A.H.v.d. Boogaard, and J. Huétink, Optimization of Forging Processes Using Finite Element Simulations, Struct. Multidisc. Optim., 2010, 42, p 797–810

    Article  Google Scholar 

  15. P.F. Bariani, S. Bruschi, A. Ghiotti, and M. Simionato, Ductile Fracture Prediction in Cold Forging Process Chains, CIRP Ann., 2011, 60(1), p 287–290

    Article  Google Scholar 

  16. J.C. Gelin and A. Moisan, Finite Element Analysis of Ductile Fracture and Defects Formation in Cold and Hot Forging, CIRP Ann., 1990, 39(1), p 215–218

    Article  Google Scholar 

  17. V.C. Hoa, D.W. Seo, and J.K. Lim, Site of Ductile Fracture Initiation in Cold Forging: A Finite Element Model, Theor. Appl. Fract. Mech., 2005, 44(1), p 58–69

    CAS  Article  Google Scholar 

  18. J. Landre, A. Pertence, P.R. Cetlin, J.M.C. Rodrigues, and P.A.F. Martins, On the Utilisation of Ductile Fracture Criteria in Cold Forging, Finite Elem. Anal. Des., 2003, 39(3), p 175–186

    Article  Google Scholar 

  19. H.-S. Kim, Y.-T. Im, and M. Geiger, Prediction of Ductile Fracture in Cold Forging of Aluminum Alloy, J. Manuf. Sci. Eng., 1999, 121(3), p 336–344

    Article  Google Scholar 

  20. S.W. Lee and M.S. Joun, Rigid-Viscoplastic Finite Element Analysis of the Piercing Process in the Automatic Simulation of Multi-Stage Forging Processes, J. Mater. Process. Technol., 2000, 104(3), p 207–214

    Article  Google Scholar 

  21. C. MacCormack and J. Monaghan, Failure Analysis of Cold Forging Dies Using FEA, J. Mater. Process. Technol., 2001, 117(1-2), p 209–215

    Article  Google Scholar 

  22. J. Guo, B. Liao, L.-G. Liu, Q. Li, X.-J. Ren, and Q.-X. Yang, Forging Limit of a Novel High-Speed-Steel Cold Work Roll Based on Ductile Fracture Criteria by Finite Element Model, Mater. Des., 2013, 52, p 1027–1034

    CAS  Article  Google Scholar 

  23. L. Niu, W. Wei, K.X. Wei, I.V. Alexandrov, and J. Hu, 3D Finite Element Analysis of Spider Non-Isothermal Forging Process, J. Mater. Eng. Perform., 2016, 25(6), p 2536–2541

    CAS  Article  Google Scholar 

  24. F. Li, J. Yi, and J. Eckert, Optimization of the Hot Forging Processing Parameters for Powder Metallurgy Fe-Cu-C Connecting Rods Based on Finite Element Simulation, Metall. Mater. Trans. A, 2017, 48(12), p 6027–6037

    CAS  Article  Google Scholar 

  25. S.W. Lee, J.M. Lee, and M.S. Joun, On Critical Surface Strain During Hot Forging of Lubricated Aluminum Alloy, Tribol. Int., 2020, 141, p 105855

    CAS  Article  Google Scholar 

  26. R. Hari Krishna and D.P. Jena, Analytical and Numerical Modelling of Open-Die Forging Process for Elliptical Cross-Section of Billet, Measurement, 2019, 134, p 855–865

    Article  Google Scholar 

  27. W. Zhuang, X. Han, L. Hua, M. Xu, and M. Chen, FE Prediction Method for Tooth Variation in Hot Forging of Spur Bevel Gears, J. Manuf. Process., 2019, 38, p 244–255

    Article  Google Scholar 

  28. G. Chu, L. Sun, G. Wang, Z. Fan, and H. Li, Axial Hydro-Forging Sequence for Variable-Diameter Tube of 6063 Aluminum Alloy, J. Mater. Process. Technol., 2019, 272, p 87–99

    CAS  Article  Google Scholar 

  29. A.J. Williams, T.N. Croft, and M. Cross, Computational Modelling of Metal Extrusion and Forging Processes, J. Mater. Process. Technol., 2002, 125-126, p 573–582

    Article  Google Scholar 

  30. H.Y. Wen, X.H. Dong, and X.Y. Ruan, Meshfree Method Based on Point Collocation for Metal Forming Simulation, Acta Metall. Sin. (Engl. Lett.), 2006, 19(2), p 79–84

    Article  Google Scholar 

  31. P.W. Cleary, M. Prakash, R. Das, and J. Ha, Modelling of Metal Forging Using SPH, Appl. Math. Model., 2012, 36(8), p 3836–3855

    Article  Google Scholar 

  32. A. Chamanfar, H.S. Valberg, B. Templin, J.E. Plumeri, and W.Z. Misiolek, Development and Validation of a Finite-Element Model for Isothermal Forging of a Nickel-Base Superalloy, Materialia, 2019, 6, p 100319

    Article  Google Scholar 

  33. P. Kubík, Minimization of Residual Stresses for Rolled Long Products, Master’s Thesis, Brno University of Technology, 2009

  34. G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, in Proceedings of the 7th International Symposium on Ballistics, The Hague, Netherlands, 1983, p 541–547

  35. J. Bořkovec, Computer Simulation of Material Separation Process, PhD Thesis, Brno University of Technology, 2008

  36. ČSN 22 8306, Closed Dies for Vertical Forging Presses: Technical Requirements on the Design, Prague: Publisher of Standards, Class number 22 8306, 1991

  37. G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21(1), p 31–48

    Article  Google Scholar 

  38. T. Wierzbicki, Y. Bao, Y.-W. Lee, and Y. Bai, Calibration and Evaluation of Seven Fracture Models, Int. J. Mech. Sci., 2005, 47(4–5), p 719–743

    Article  Google Scholar 

  39. F. Šebek, P. Kubík, J. Petruška, and J. Hůlka, Extremely Low-Stress Triaxiality Tests in Calibration of Fracture Models in Metal-Cutting Simulation, Metall. Mater. Trans. A, 2016, 47(11), p 5302–5312

    Article  Google Scholar 

  40. Ch.Z. Duan, H.Y. Yu, Y.J. Cai, and Y.Y. Li, Finite Element Simulation and Experiment of Chip Formation During High Speed Cutting of Hardened Steel, Appl. Mech. Mater., 2010, 29–32, p 1838–1843

    Article  Google Scholar 

  41. J. Kvapil, Thermal Contact Resistance Under High Temperature, Master’s Thesis, Brno University of Technology, 2016

  42. ČSN 41 2050, Steel 12050, Prague: Publisher of the Office for Standards and Testing, Class number 41 2050, 1978

  43. L. Koudela, Numerical Modelling and Optimization of the Hot Stamping Process, PhD Thesis, University of West Bohemia, 2015

  44. B. Zeramdini, C. Robert, G. Germain, and T. Pottier, Numerical Simulation of Metal Forming Processes with 3D Adaptive Remeshing Strategy Based on a Posteriori Error Estimation, Int. J. Mater. Form., 2019, 12, p 411–428

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Czech Science Foundation under contract No. 19-20802S “A coupled real-time thermomechanical solidification model of steel for crack prediction.” The authors would also like to thank professor Josef Štětina and associate professor Michal Pohanka, both with the Faculty of Mechanical Engineering, Brno University of Technology, for providing us with the material data for the considered carbon steel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Šebek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nytra, M., Kubík, P., Petruška, J. et al. A Fully Coupled Thermomechanical Damage Analysis of Hot Closed Die Forging Using Finite Element Modeling. J. of Materi Eng and Perform 29, 8236–8246 (2020). https://doi.org/10.1007/s11665-020-05252-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05252-4

Keywords

  • bulk formability
  • computational materials design
  • failure analysis
  • forging
  • modeling and simulation
  • thermal analysis