Skip to main content
Log in

Investigation on Properties of Shape Memory Alloy Wire of Cu-Al-Be Doped with Zirconium

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, the effect of wire drawing on the microstructures, mechanical properties, and shape memory effect of compositions Cu87.85-Al11.70-Be0.45 (CAB) and Cu87.73-Al11.70-Be0.45-Zr0.12 (CABZ) has been experimentally investigated. The wires with a diameter of 1.33 mm are manufactured from the casted round bars through the rolling and drawing (secondary) process. Investigations are performed on microstructure and phase for both as-cast and wire-drawn SMAs. Further, wire-drawn SMAs are investigated for phase transformation temperatures, hardness, ductility, and shape memory effect. The results show that the average grain size decreased with 73.06% by adding Zr to the CAB alloy. Further, the grain size of CABZ alloy wire decreased with 67.38% in the longitudinal direction and 67.07% in the transverse direction as compared to CAB alloy wire after the secondary process. Improvement of the grain structure in CABZ alloy wire resulted in an enhancement in the hardness of 13.86% in longitudinal and 12.43% in the transverse direction, and tensile strength of 134.58% and ductility of 177.06%. The phase transformation temperatures reduced by the addition of Zr, and better shape recovery is observed in CABZ alloy wire.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.A. Schroeder and C.M. Wayman, The Formation of Martensite and the Mechanism of the Shape Memory Effect in Single Crystals of Cu-Zn Alloys, Acta Metall., 1977, 25(12), p 1375–1391

    CAS  Google Scholar 

  2. K. Otsuka and X. Ren, Recent Developments in the Research of Shape Memory Alloys, Intermetallics, 1999, 7(5), p 511–528

    CAS  Google Scholar 

  3. A.L. Roitburd and G.V. Kurdjumov, The Nature of Martensitic Transformations, Mater. Sci. Eng., 1979, 39(2), p 141–167

    CAS  Google Scholar 

  4. M. Muruganant, A. Chirazi, and B. Raj, Frontiers in Materials Processing, Applications, Research and Technology, Springer Singapore, Singapore, 2018

    Google Scholar 

  5. W.J. Buehler, J.V. Gilfrich, and R.C. Wiley, Effect of Low-Temperature Phase Changes on the Mechanical Properties of Alloys Near Composition TiNi, J. Appl. Phys., 1963, 34(5), p 1475–1477

    CAS  Google Scholar 

  6. D. Stoeckel, The Shape Memory Effect—Phenomenon, Alloys, and Applications, Shape Mem. Eff. Alloy, 1995, 1, p 1–13

    Google Scholar 

  7. K. Otsuka and T. Kakeshita, Science and Technology of Shape-Memory Alloys: New Developments, MRS Bull., 2002, 27(2), p 91–100

    Google Scholar 

  8. J. Mohd Jani, M. Leary, A. Subic, and M.A. Gibson, A Review of Shape Memory Alloy Research, Applications and Opportunities, Mater. Des., 2014, 56, p 1078–1113

    CAS  Google Scholar 

  9. Y. Liu and J. van Humbeeck, On the Damping Behaviour of Niti Shape Memory Alloy, Le J. Phys. IV, 1997, 07(5), p C5-519-C5-524

    Google Scholar 

  10. R. DesRoches, J. McCormick, and M. Delemont, Cyclic Properties of Superelastic Shape Memory Alloy Wires and Bars, J. Struct. Eng., 2004, 130(1), p 38–46

    Google Scholar 

  11. V. Recarte, R. Pérez-Sáez, E. Bocanegra, M. Nó, and J. San Juan, Dependence of the Martensitic Transformation Characteristics on Concentration in Cu-Al-Ni Shape Memory Alloys, Mater. Sci. Eng., A, 1999, 273–275, p 380–384

    Google Scholar 

  12. M. Franz and E. Hornbogen, Martensitic Transformation of a CuZnAl-Shape Memory Alloy Strengthened by Hot-Rolling, Mater. Sci. Eng., A, 1998, 252(2), p 157–165

    Google Scholar 

  13. V. Recarte, R.B. Pérez-Sáez, J. San Juan, E.H. Bocanegra, and M.L. Nó, Influence of Al and Ni Concentration on the Martensitic Transformation in Cu-Al-Ni Shape-Memory Alloys, Metall. Mater. Trans. A, 2002, 33(8), p 2581–2591

    Google Scholar 

  14. N.J. Park, Texture in CuZnAl Shape Memory Alloys, Met. Mater. Int., 1996, 2(3), p 159–168

    CAS  Google Scholar 

  15. S. Belkahla, H.F. Flores Zuñiga, and G. Guenin, Elaboration and Characterization of New Low Temperature Shape Memory Cu-Al-Be Alloys, Mater. Sci. Eng., A, 1993, 169(1–2), p 119–124

    Google Scholar 

  16. S. Najah Saud Al-Humairi, Cu-based shape memory alloys: modified structures and their related properties, in Recent Advancements in the Metallurgical Engineering and Electrodeposition (IntechOpen, 2020)

  17. S.H. Chang, Influence of Chemical Composition on the Damping Characteristics of Cu–Al–Ni Shape Memory Alloys, Mater. Chem. Phys., 2011, 125(3), p 358–363

    CAS  Google Scholar 

  18. Ş.N. Balo and M. Ceylan, Effect of Be Content on Some Characteristics of Cu–Al–Be Shape Memory Alloys, J. Mater. Process. Technol., 2002, 124(1–2), p 200–208

    CAS  Google Scholar 

  19. A.R. Pelton, S.M. Russell, and J. DiCello, The Physical Metallurgy of Nitinol for Medical Applications, JOM, 2003, 55(5), p 33–37

    Google Scholar 

  20. G.B. Cho, Y.H. Kim, S.G. Hur, C.A. Yu, and T.H. Nam, Transformation Behavior and Mechanical Properties of a Nanostructured Ti-50.0Ni(at.%) Alloy, Met. Mater. Int., 2006, 12(2), p 181–187

    CAS  Google Scholar 

  21. S. Montecinos, A. Cuniberti, R. Romero, and M. Stipcich, Grain Size Evolution in Cu-Based Shape Memory Alloys, J. Mater. Sci., 2015, 50(11), p 3994–4002

    CAS  Google Scholar 

  22. P. Zhang, A. Ma, J. Jiang, S. Lu, P. Lin, D. Yang, and G. Liu, Microstructural Evolution and Mechanical Response of Cu–Al–Be–B Shape Memory Alloy Processed by Repetitive Equal Channel Angular Pressing, J. Alloys Compd., 2010, 497(1–2), p 210–214

    CAS  Google Scholar 

  23. V. Sampath, Studies on the Effect of Grain Refinement and Thermal Processing on Shape Memory Characteristics of Cu–Al–Ni Alloys, Smart Mater. Struct., 2005, 14(5), p S253–S260

    CAS  Google Scholar 

  24. S. Yang, F. Zhang, J. Wu, J. Zhang, C. Wang, and X. Liu, Microstructure Characterization, Stress-Strain Behavior, Superelasticity and Shape Memory Effect of Cu–Al–Mn–Cr Shape Memory Alloys, J. Mater. Sci., 2017, 52(10), p 5917–5927

    CAS  Google Scholar 

  25. X. Zhang, M. Zhang, T. Cui, J. Li, Q. Liu, and H. Wang, The Enhancement of the Mechanical Properties and the Shape Memory Effect for the Cu-13.0Al-4.0Ni Alloy by Boron Addition, J. Alloys Compd., 2019, 776, p 326–333

    CAS  Google Scholar 

  26. V.H.C. de Albuquerque, T.A.A. de Melo, R.M. Gomes, S.J.G. de Lima, and J.M.R.S. Tavares, Grain Size and Temperature Influence on the Toughness of a CuAlBe Shape Memory Alloy, Mater. Sci. Eng., A, 2010, 528(1), p 459–466

    Google Scholar 

  27. B.N. Guniputi and S.M. Murigendrappa, Influence of Gd on the Microstructure, Mechanical and Shape Memory Properties of Cu-Al-Be Polycrystalline Shape Memory Alloy, Mater. Sci. Eng., A, 2018, 737(June), p 245–252

    CAS  Google Scholar 

  28. G.-S. Yang, J.-K. Lee, and W.-Y. Jang, Effect of Grain Refinement on Phase Transformation Behavior and Mechanical Properties of Cu-Based Alloy, Trans. Nonferrous Met. Soc. China, 2009, 19(4), p 979–983

    CAS  Google Scholar 

  29. G. Bala Narasimha and S.M. Murigendrappa, Effect of Zirconium on the Properties of Polycrystalline Cu-Al-Be Shape Memory Alloy, Mater. Sci. Eng., A, 2019, 755(November 2018), p 211–219

    CAS  Google Scholar 

  30. J. Yang, Q.Z. Wang, F.X. Yin, C.X. Cui, P.G. Ji, and B. Li, Effects of Grain Refinement on the Structure and Properties of a CuAlMn Shape Memory Alloy, Mater. Sci. Eng., A, 2016, 664, p 215–220

    CAS  Google Scholar 

  31. V. Sampath, Improvement of Shape-Memory Characteristics and Mechanical Properties of Copper–Zinc–Aluminum Shape-Memory Alloy with Low Aluminum Content by Grain Refinement, Mater. Manuf. Process., 2006, 21(8), p 789–795

    CAS  Google Scholar 

  32. J.S. Lee and C.M. Wayman, Grain Refinement of Cu-Zn-Al Shape Memory Alloys, Metallography, 1986, 19(4), p 401–419

    CAS  Google Scholar 

  33. J.S. Lee and C.M. Wayman, Grain Refinement of a Cu-Al-Ni Shape Memory Alloy by Ti and Zr Additions, Trans. Jpn. Inst. Met., 1986, 27(8), p 584–591

    CAS  Google Scholar 

  34. G. Mussot-Hoinard, E. Patoor, and A. Eberhardt, Influence of Wire-Drawing on the Properties of a Cu–Al–Be Polycrystalline Shape Memory Alloy, Mater. Sci. Eng., A, 2008, 481–482(1–2 C), p 538–541

    Google Scholar 

  35. K. Mehta and K. Gupta, Fabrication and Processing of Shape Memory Alloys, Springer International Publishing, Cham, 2019

    Google Scholar 

  36. E. Hornbogen, Ausforming of NiTi, J. Mater. Sci., 1999, 34(3), p 599–606

    CAS  Google Scholar 

  37. M.E. Mitwally and M. Farag, Effect of Cold Work and Annealing on the Structure and Characteristics of NiTi Alloy, Mater. Sci. Eng., A, 2009, 519(1–2), p 155–166

    Google Scholar 

  38. J.R. Davis, ASM Speciality Handbook, Copper and Copper Alloys, ASM International, Cleveland, 2001

    Google Scholar 

  39. F. Fang, L. Zhou, X. Hu, X. Zhou, Y. Tu, Z. Xie, and J. Jiang, Microstructure and Mechanical Properties of Cold-Drawn Pearlitic Wires Affect by Inherited Texture, Mater. Des., 2015, 79, p 60–67

    CAS  Google Scholar 

  40. C.S. Çetinarslan, A Study on Influences of Some Process Parameters on Cold Drawing of Ferrous Wires, Indian J. Eng. Mater. Sci., 2012, 19(4), p 221–228

    Google Scholar 

  41. G. Choi and K. Lee, Effect of Cold Rolling on the Microstructural Evolution of New β-Typed Ti–6Mo–6 V–5Cr–3Sn–2.5Zr Alloys, Mater. Charact., 2017, 123, p 67–74

    CAS  Google Scholar 

  42. F.C. Campbell, Deformation processing, in Elements of Metallurgy and Engineering Alloys (ASM International, 2008), p. 279–302

  43. S. Ergen, O. Uzun, F. Yilmaz, and M.F. Kiliçaslan, Shape Memory Properties and Microstructural Evolution of Rapidly Solidified CuAlBe Alloys, Mater. Charact., 2013, 80, p 92–97

    CAS  Google Scholar 

  44. P. Zhang, A. Ma, S. Lu, P. Lin, J. Jiang, H. Ma, and C. Chu, Effect of Equal Channel Angular Pressing and Heat Treatment on the Microstructure of Cu–Al–Be–B Shape Memory Alloy, Mater. Lett., 2009, 63(30), p 2676–2679

    CAS  Google Scholar 

  45. C.-C. Hsu and W.-H. Wang, Superplastic Forming Characteristics of a Cu-Zn-Al-Zr Shape Memory Alloy, Mater. Sci. Eng., A, 1996, 205(1–2), p 247–253

    Google Scholar 

Download references

Acknowledgment

This study financially supported by the SERB, Department of Science and Technology, Government of India, under Project No: EMR/2016/001247.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Murigendrappa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.K., Murigendrappa, S.M. & Kattimani, S. Investigation on Properties of Shape Memory Alloy Wire of Cu-Al-Be Doped with Zirconium. J. of Materi Eng and Perform 29, 7260–7269 (2020). https://doi.org/10.1007/s11665-020-05233-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05233-7

Keywords

Navigation