Skip to main content
Log in

Dissimilar Metal Joining of Ti and Ni Using Ti-Al Powder Interlayer Via Rapid Thermal Explosion Method

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To achieve the low energy consumption and high strength joining between Ti and Ni, a novel joining method (rapid thermal explosion, TE) was developed for joining dissimilar metals using Ti-Al mixture powders as flux. The TE reaction temperature of Ti-Al flux was measured, and the microstructure and mechanical properties of Ti/Ni joint were investigated. The results reveal that the combustion temperature of the Ti-Al powder interlayer is 1103 °C, which is higher than the joining temperature, and an obvious self-exothermic phenomenon lasts 20 s. The intermetallic compound diffusion layers formed at both interfaces mainly owing to the diffusion of Al and the growth activation energy of diffusion layers near both interfaces are 79.68 kJ/mol and 38.26 kJ/mol, respectively. Based on the sheer strength and diffusion layer, the formation mechanism of Ti/Ni joints is metallurgical bonding through atomic diffusion and formation of the diffusion layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. G.M. Sheng, J.W. Huang, B. Qin et al., An Experimental Investigation of Phase Transformation Superplastic Diffusion Bonding of Titanium Alloy to Stainless Steel, J. Mater. Sci., 2005, 40, p 6385–6390

    CAS  Google Scholar 

  2. B. Zhang, T. Wang, G. Chen et al., Contact Reactive Joining of TA15 and 304 Stainless Steel Via a Copper Interlayer Heated by Electron Beam with a Beam Deflection, J. Mater. Eng. Perform., 2012, 21, p 2067–2073

    CAS  Google Scholar 

  3. C. Veiga and J.P. Davim, Loureiro AJR Properties and Application of Titanium Alloys: A Brief Review, Rev. Adv. Mater. Sci., 2012, 32, p 133–148

    CAS  Google Scholar 

  4. G. Meschut, V. Janzen, and T. Olfermann, Innovative and Highly Productive Joining Technologies for Multi-Material Lightweight Car Body Structures, J. Mater. Eng. Perform., 2014, 23, p 1515–1523

    CAS  Google Scholar 

  5. N. Orhan, T.I. Khan, and M. Eroğlu, Diffusion Bonding of a Microduplex Stainless Steel to Ti-6Al-4V, Scripta Mater., 2001, 45, p 441–446

    CAS  Google Scholar 

  6. H. Zhao, G. Zhang, Q. Zhang et al., Joining Mechanism and Mechanical Properties of Metallic Bump Assisted Weld-Bonded (MBaWB) Joints of AA6061-T6 and Bare DP590, J. Manuf. Process., 2020, 50, p 204–215

    Google Scholar 

  7. L. Zhou, M. Yu, B. Liu et al., Microstructure and Mechanical Properties of Al/Steel Dissimilar Welds Fabricated by Friction Surfacing Assisted Friction Stir Lap Welding, J. Mater. Res. Technol., 2020, 9(1), p 212–221

    CAS  Google Scholar 

  8. M. Li, C. Zhang, D. Wang et al., Friction Stir Spot Welding of Aluminum and Copper: A Review, Materials, 2019, 13, p 156

    Google Scholar 

  9. X. Gao, S. Chen, D. Feng et al., Diffusion Bonding of Ti/Ni Under the Influence of an Electric Current: Mechanism and Bond Structure, J. Mater. Sci., 2017, 52, p 1–10

    Google Scholar 

  10. A.S. Mukasyan and A.S. Rogachev, Combustion Synthesis: Mechanically Induced Nanostructured Materials, J. Mater. Sci., 2017, 52, p 11826–11833

    CAS  Google Scholar 

  11. R. Rosa, E. Colombini, P. Veronesi et al., Microwave Ignited Combustion Synthesis as a Joining Technique for Dissimilar Materials, J. Mater. Eng. Perform., 2012, 21, p 725–732

    CAS  Google Scholar 

  12. J.J. Moore and H.J. Feng, Combustion Synthesis of Advanced Materials: Part 1. Reaction Parameters, Prog. Mater. Sci., 1995, 39(4-5), p 243–273

    CAS  Google Scholar 

  13. P. Lall, D. Zhang, and V. Yadav, High Strain Rate Constitutive Behavior of SAC105 and SAC305 Lead-Free Solder During Operation at High Temperature, Microelectron. Reliab., 2016, 62, p 4–17

    CAS  Google Scholar 

  14. Z. Li and O.J. Ilegbusi, Experimental Study of Thermal and Flame Front Characteristics in Combustion Synthesis of Porous Ni-Ti Intermetallic Material, J. Mater. Eng. Perform., 2012, 21, p 1193–1198

    CAS  Google Scholar 

  15. M. Adeli, M. Mahvi, K.R. Jahromi et al., The Combustion Synthesis of Ni-Ti Intermetallic Compounds, Adv. Mater. Process. Technol., 2016, 2, p 266–271

    Google Scholar 

  16. S.P. Chen, F. Dong, W.H. Fan et al., Interface Kinetics of Combustion-Diffusion Bonding of Ni3Al/Ni and TiAl/Ti Under Direct Current Field, J. Mater. Sci., 2013, 48, p 1268–1274

    CAS  Google Scholar 

  17. J.C. Feng, J. Cao, and Z.R. Li, Microstructure Evolution and Reaction Mechanism During Reactive Joining of TiAl Intermetallic to TiC Cermet Using Ti-Al-C-Ni Interlayer, J. Alloy. Compd., 2007, 436, p 298–302

    CAS  Google Scholar 

  18. J.J. Moore, D.W. Readey, H.J. Feng et al., The Combustion Synthesis of Advanced Materials, JOM, 1994, 46, p 72–78

    CAS  Google Scholar 

  19. J. Wang, J. Cheng, P. Bai et al., Investigation of Joining Al-C-Ti Cermets and Ti6Al4V by Combustion Synthesis, Mater. Sci. Eng. B, 2012, 177, p 1703–1706

    CAS  Google Scholar 

  20. T. Matsuda, T. Maruko, T. Ogura et al., Self-heating Bonding of A5056 Aluminum Alloys Using Exothermic Heat of Combustion Synthesis, Mater. Des., 2017, 113, p 109–115

    CAS  Google Scholar 

  21. T.F. Song, X.S. Jiang, Z.Y. Shao et al., Microstructure and Mechanical Properties of Vacuum Diffusion Bonded Joints Between Ti-6Al-4V Titanium Alloy and 316L Stainless Steel Using Cu/Nb Multi-interlayer, Vacuum, 2017, 145, p 68–76

    CAS  Google Scholar 

  22. S. Kundu and S. Chatterjee, Diffusion Bonding Between Commercially Pure Titanium and Micro-duplex Stainless Steel, Mater. Sci. Eng. A, 2008, 480, p 316–322

    Google Scholar 

  23. J. Cao, C. Li, J. Qi et al., Combustion Joining of Carbon-Carbon Composites to TiAl Intermetallics Using a Ti-Al-C Powder Composite Interlayer, Compos. Sci. Technol., 2015, 115, p 72–79

    CAS  Google Scholar 

  24. L.Z. Liu, G.B. Ying, J. Zhu et al., High-Temperature Compressive Properties of TiC-TiB_2/Cu Composites Prepared by Self-propagating High-Temperature Synthesis, Rare Met., 2014, 33, p 95–98

    Google Scholar 

  25. B. Zou, S. Ping, X. Cao et al., The Mechanism of Thermal Explosion (TE) Synthesis of TiC-TiB 2 Particulate Locally Reinforced Steel Matrix Composites from an Al-Ti-B 4 C System Via a TE-Casting Route, Mater. Chem. Phys., 2012, 132, p 51–62

    CAS  Google Scholar 

  26. Y.H. Wang, J.P. Lin, Y.H. He et al., Effect of Nb on Pore Structure and Tensile Property of Ti-48Al Cellular Alloy, J. Alloy. Compd., 2008, 456, p 303

    Google Scholar 

  27. D.J. Goda, N.L. Richards, W.F. Caley et al., The Effect of Processing Variables on the Structure and Chemistry of Ti-Aluminide Based LMCS, Mater. Sci. Eng. A, 2002, 334, p 280–290

    Google Scholar 

  28. Q. Shi, B. Qin, P. Feng et al., Synthesis, Microstructure and Properties of Ti-Al Porous Intermetallic Compounds Prepared by a Thermal Explosion Reaction, RSC Adv., 2015, 5, p 46339–46347

    CAS  Google Scholar 

  29. K.W. Liu and K.P. Plucknett, Titanium Aluminide (Ti-48Al) Powder Synthesis, Size Refinement and Sintering, Adv. Powder Technol., 2017, 28, p 314–323

    CAS  Google Scholar 

  30. J.T. Li, Y.P. Zong, and S.M. Hao, Effects of Alloy Elements (C, B, Fe, Si) on the Ti-Al Binary Phase Diagram, J. Mater. Sci. Technol., 1999, 01, p 58–62

    Google Scholar 

  31. J. Wu, Y.C. Liu, C. Li, Y.T. Wu, X.C. Xia, and H.J. Li, Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents, Acta Metall. Sin., 2020, 56, p 21–35

    Google Scholar 

  32. Z. Wang, X. Jiao, P. Feng et al., Highly Porous Open Cellular TiAl-Based Intermetallics Fabricated by Thermal Explosion with Space Holder Process, Intermetallics, 2016, 68, p 95–100

    CAS  Google Scholar 

  33. C.Q. Zhang and W. Liu, Non-parabolic Al3Ti Intermetallic Layer Growth on Aluminum-Titanium Interface at Low Annealing Temperatures, Mater. Lett., 2019, 256, p 126624

    CAS  Google Scholar 

  34. C. Zhang, J.D. Robson, S.J. Haigh et al., Interfacial Segregation of Alloying Elements During Dissimilar Ultrasonic Welding of AA6111 Aluminum and Ti6Al4V Titanium, Metall. Mater. Trans. A, 2019, 50, p 5143–5152

    CAS  Google Scholar 

  35. X. Li, F. Li, F. Guo et al., Effect of Isothermal Aging and Thermal Cycling on Interfacial IMC Growth and Fracture Behavior of SnAgCu/Cu Joints, J. Electron. Mater., 2011, 40, p 51–61

    Google Scholar 

  36. A. Paul, Growth Mechanism of Phases, Kirkendall Voids, Marker Plane Position, and Indication of the Relative Mobilities of the Species in the interdiffusion zone, J. Mater. Sci. Mater. Electron., 2011, 22, p 833–837

    CAS  Google Scholar 

  37. F. Wang, L. Zhou, X. Wang et al., Microstructural Evolution and Joint Strength of Sn-58Bi/Cu Joints Through Minor Zn Alloying Substrate During Isothermal Aging, J. Alloy. Compd., 2016, 688, p 639–648

    CAS  Google Scholar 

  38. R. Chen, C. Wang, P. Jiang et al., Effect of Axial Magnetic Field in the Laser Beam Welding of Stainless Steel to Aluminum Alloy, Mater. Des., 2016, 109, p 146–152

    CAS  Google Scholar 

  39. K. Zeng, R. Stierman, T.C. Chiu et al., Kirkendall Void Formation in Eutectic SnPb Solder Joints on Bare Cu and Its Effect on Joint Reliability, J. Appl. Phys., 2005, 97(2), p 750

    Google Scholar 

  40. D. Yang, J. Cai, Q. Wang et al., IMC Growth and Shear Strength of Sn-Ag-Cu/Co-P Ball Grid Array Solder Joints Under Thermal Cycling, J. Mater. Mater. Electron., 2015, 26(2), p 962–969

    CAS  Google Scholar 

  41. B.J. Kellett and F.F. Lange, Thermodynamics of Densification: I, Sintering of Simple Particle Arrays, Equilibrium Configurations, Pore Stability, and Shrinkage, J. Am. Ceram. Soc., 1989, 72, p 725–734

    CAS  Google Scholar 

  42. T. An and F. Qin, Effects of the Intermetallic Compound Microstructure on the Tensile Behavior of Sn3.0Ag0.5Cu/Cu Solder Joint Under Various Strain Rates, Microelectron. Reliab., 2014, 54, p 932–938

    CAS  Google Scholar 

  43. S. Simoes, F. Viana, and M.F. Vieira, Reactive Commercial Ni/Al Nanolayers for Joining Lightweight Alloys, J. Mater. Eng. Perform., 2014, 23, p 1536–1543

    CAS  Google Scholar 

  44. J.K. Lee, M.H. Oh, and D.M. Wee, Long-Term Oxidation Properties of Al-Ti-Cr Two-Phase Alloys as Coating Materials for TiAl Alloys, Intermetallics, 2002, 10, p 352

    Google Scholar 

  45. F.A. Calvo, A. Ureng, J.M.G.D. Salazar et al., Special Features of the Formation of the Diffusion Bonded Joints Between Copper and Aluminium, J. Mater. Sci., 1988, 1988(23), p 2273–2280

    Google Scholar 

  46. K.N. Tu, T.Y. Lee, and J.W. Jang, Wetting Reaction Versus Solid State Aging of Eutectic SnPb on Cu, J. Appl. Phys., 2001, 89, p 4843–4849

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (2019ZDPY20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuanru Ren or Xiaohong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, C., Cai, X., Zhu, L. et al. Dissimilar Metal Joining of Ti and Ni Using Ti-Al Powder Interlayer Via Rapid Thermal Explosion Method. J. of Materi Eng and Perform 29, 7239–7249 (2020). https://doi.org/10.1007/s11665-020-05231-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05231-9

Keywords

Navigation