Skip to main content
Log in

Dynamic Recrystallization Modeling and Mechanisms in Inconel 690 Alloy during Hot Compressive Deformation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The dynamic recrystallization (DRX) behavior of INCONEL 690 (IN690) alloy was studied using electron backscatter diffraction (EBSD) and transmission electron microscopy. Isothermal compression tests were performed on a Gleeble-3500 simulator under temperatures 950-1100 °C, strain rates 0.01-1 s−1, and the maximum true strain 0.8. An Avrami-type model was developed to investigate the DRX behavior of IN690; it was found to be extremely sensitive to the processing parameters of temperature, strain rate, and true strain. As temperature increased and strain rate decreased, the activation energy increased, thus accelerating movement of dislocation and migration of grain boundaries, causing DRX behavior acceleration. The DRX behavior is accompanied by dislocation rearrangement and annihilation. The DRX mechanism of IN690 is dominated by discontinuous dynamic recrystallization (DDRX) and supplemented by continuous dynamic recrystallization (CDRX). A key characteristic of DDRX is grain-boundary bulges, while CDRX features progressive sub-grain rotation, leading to migration of low-angle grain boundaries to high-angle grain boundaries. A series of constitutive models were embedded into finite-element method software to study the DRX behavior of IN690. The results show that the microstructure evolution regularity obtained by the simulation method is consistent with the experimental values, which provides a basis for computer simulations of the hot machining process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Kai, G. Yu, C. Tsai, M. Liu, and S. Yao, The Effects of Heat Treatment on the Chromium Depletion, Precipitate Evolution, and Corrosion Resistance of INCONEL Alloy 690, Metall. Trans. A, 1989, 20(10), p 2057–2067

    Google Scholar 

  2. H. Jiang, L. Yang, J. Dong, M. Zhang, and Z. Yao, The Recrystallization Model and Microstructure Prediction of Alloy 690 During Hot Deformation, Mater. Des., 2016, 104, p 162–173

    CAS  Google Scholar 

  3. J. Wang and S.-C. Zhai, Dynamic Recrystallization Kinetics of 690 Alloy During Hot Compression of Double-cone Samples, J. Mater. Eng. Perform., 2017, 26(3), p 1433–1443

    CAS  Google Scholar 

  4. B. Wang, S.-H. Zhang, M. Cheng, and H.-W. Song, Dynamic Recrystallization Mechanism of Inconel 690 Superalloy During Hot Deformation at High Strain Rate, J. Mater. Eng. Perform., 2013, 22(8), p 2382–2388

    CAS  Google Scholar 

  5. G.-z. Quan, R.-j. Shi, Z. Jiang, L. Qiao, W. Xiong, and H.-m. Qiu, Modeling of Dynamic Recrystallization Volume Fraction Evolution for AlCu4SiMg Alloy and Its Application in FEM, Trans. Nonferrous Met. Soc. China, 2019, 29(6), p 1138–1151

    CAS  Google Scholar 

  6. M.-S. Chen, Z.-H. Zou, Y. Lin, H.-B. Li, and W.-Q. Yuan, Effects of Annealing Parameters on Microstructural Evolution of a Typical Nickel-Based Superalloy During Annealing Treatment, Mater. Charact., 2018, 141, p 212–222

    CAS  Google Scholar 

  7. M.-S. Chen, W.-Q. Yuan, H.-B. Li, and Z.-H. Zou, New Insights on the Relationship Between Flow Stress Softening and Dynamic Recrystallization Behavior of Magnesium Alloy AZ31B, Mater. Charact., 2019, 147, p 173–183

    CAS  Google Scholar 

  8. C. Bennett, A Comparison of Material Models for the Numerical Simulation of Spike-Forging of a CrMoV Alloy Steel, Comput. Mater. Sci., 2013, 70, p 114–122

    CAS  Google Scholar 

  9. X. Yang, A. He, C. Wu, S. Li, H. Zhang, and X. Wang, Study of Static Recrystallization Behavior of a Nitrogen-Alloyed Ultralow Carbon Austenitic Stainless Steel by Experiment and Simulation, J. Mater. Eng. Perform., 2015, 24(11), p 4346–4357

    CAS  Google Scholar 

  10. J. Favre, D. Fabrègue, K. Yamanaka, and A. Chiba, Modeling Dynamic Recrystallization of L-605 Cobalt Superalloy, Mater. Sci. Eng., A, 2016, 653, p 84–92

    CAS  Google Scholar 

  11. D. Jia, W. Sun, D. Xu, and F. Liu, Dynamic Recrystallization Behavior of GH4169G Alloy During Hot Compressive Deformation, J. Mater. Sci. Technol., 2019, 35(9), p 1851–1859

    Google Scholar 

  12. Y. Lin, M.-S. Chen, and J. Zhong, Effects of Deformation Temperatures on Stress/Strain Distribution and Microstructural Evolution of Deformed 42CrMo Steel, Mater. Des., 2009, 30(3), p 908–913

    CAS  Google Scholar 

  13. G. Ebrahimi, A. Momeni, H. Ezatpour, M. Jahazi, and P. Bocher, Dynamic Recrystallization in Monel400 Ni-Cu Alloy: Mechanism and Role of Twinning, Mater. Sci. Eng., A;, 2019, 744, p 376–385

    CAS  Google Scholar 

  14. S. Mitsche, P. Pölt, and C. Sommitsch, Recrystallization Behaviour of the Nickel‐Based Alloy 80 A During Hot Forming, J. Microsc., 2007, 227(3), p 267–274

    CAS  Google Scholar 

  15. Z. Wan, Y. Sun, L. Hu, and H. Yu, Dynamic Softening Behavior and Microstructural Characterization of TiAl-Based Alloy During Hot Deformation, Mater. Charact., 2017, 130, p 25–32

    CAS  Google Scholar 

  16. S. Wang, M. Zhang, H. Wu, and B. Yang, Study on the Dynamic Recrystallization Model and Mechanism of Nuclear Grade 316LN Austenitic Stainless Steel, Mater. Charact., 2016, 118, p 92–101

    CAS  Google Scholar 

  17. Y. Ning, T. Wang, M. Fu, M. Li, L. Wang, and C. Zhao, Competition between Work-Hardening Effect and Dynamic-Softening Behavior for Processing As-cast GH4720Li Superalloys with Original Dendrite Microstructure During Moderate-Speed Hot Compression, Mater. Sci. Eng., A, 2015, 642, p 187–193

    CAS  Google Scholar 

  18. F. Zhang, J.L. Sun, J. Shen, X.D. Yan, and J. Chen, Flow Behavior and Processing Maps of 2099 Alloy, Mater. Sci. Eng., A;, 2014, 613, p 141–147

    CAS  Google Scholar 

  19. W. Roberts and B. Ahlblom, A Nucleation Criterion for Dynamic Recrystallization During Hot Working, Acta Metall., 1978, 26(5), p 801–813

    CAS  Google Scholar 

  20. H. Zhang, K. Zhang, S. Jiang, H. Zhou, C. Zhao, and X. Yang, Dynamic Recrystallization Behavior of a γ′-Hardened Nickel-Based Superalloy During Hot Deformation, J. Alloys Compd., 2015, 623, p 374–385

    CAS  Google Scholar 

  21. T. Sakai, Dynamic Recrystallization Microstructures Under Hot Working Conditions, J. Mater. Process. Technol., 1995, 53(1–2), p 349–361

    Google Scholar 

  22. F. Qin, H. Zhu, Z. Wang, X. Zhao, W. He, and H. Chen, Dislocation and Twinning Mechanisms for Dynamic Recrystallization of As-cast Mn18Cr18N Steel, Mater. Sci. Eng., A, 2017, 684, p 634–644

    CAS  Google Scholar 

  23. Y. Lin, X.-Y. Wu, X.-M. Chen, J. Chen, D.-X. Wen, J.-L. Zhang, and L.-T. Li, EBSD Study of a Hot Deformed Nickel-Based Superalloy, J. Alloys Compd., 2015, 640, p 101–113

    CAS  Google Scholar 

  24. Z. Bi, M. Zhang, J. Dong, K. Luo, and J. Wang, A New Prediction Model of Steady State Stress Based on the Influence of the Chemical Composition for Nickel-base Superalloys, Mater. Sci. Eng., A, 2010, 527(16-17), p 4373–4382

    Google Scholar 

  25. E. Poliak and J. Jonas, A One-parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44(1), p 127–136

    CAS  Google Scholar 

  26. K. Wang, M. Fu, S. Lu, and X. Li, Study of the Dynamic Recrystallization of Ti–6.5 Al–3.5 Mo–1.5 Zr–0.3 Si Alloy in β-Forging Process Via Finite Element Method Modeling and Microstructure Characterization, Mater. Des., 2011, 32(3), p 1283–1291

    CAS  Google Scholar 

  27. M.-S. Chen, Y. Lin, and X.-S. Ma, The Kinetics of Dynamic Recrystallization of 42CrMo Steel, Mater. Sci. Eng., A, 2012, 556, p 260–266

    CAS  Google Scholar 

  28. J. Wang, J. Dong, M. Zhang, and X. Xie, Hot Working Characteristics of Nickel-Base Superalloy 740H During Compression, Mater. Sci. Eng., A, 2013, 566, p 61–70

    CAS  Google Scholar 

  29. S. Mandal, A. Bhaduri, and V.S. Sarma, Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2012, 43(6), p 2056–2068

    CAS  Google Scholar 

  30. P. Haijian, L. Defu, G. Shengli, G. Qingmiao, H. Jie, W. Zhigang, Hot Deformation Behavior of GH690 Alloy, Chin. J. Rare Met., 2011, 3, p 356–361

    Google Scholar 

  31. J. Wang, H. Xiao, H. Xie, X. Xu, and Y. Gao, Study on Hot Deformation Behavior of Carbon Structural Steel with Flow Stress, Mater. Sci. Eng., A, 2012, 539, p 294–300

    CAS  Google Scholar 

  32. Y. Xu, L. Hu, and Y. Sun, Deformation Behaviour and Dynamic Recrystallization of AZ61 Magnesium Alloy, J. Alloys Compd., 2013, 580, p 262–269

    CAS  Google Scholar 

  33. X. Li, L. Duan, J. Li, X. Wu, Experimental Study and Numerical Simulation of Dynamic Recrystallization Behavior of a Micro-Alloyed Plastic Mold Steel. Mater. Des. (1980–2015), 2015, 66, p 309-320

  34. S.H. Zahiri, C.H. Davies, and P.D. Hodgson, A Mechanical Approach to Quantify Dynamic Recrystallization in Polycrystalline Metals, Scr. Mater., 2005, 52(4), p 299–304

    CAS  Google Scholar 

  35. Z. Wan, Y. Sun, L. Hu, and H. Yu, Experimental Study and Numerical Simulation of Dynamic Recrystallization Behavior of TiAl-Based Alloy, Mater. Des., 2017, 122, p 11–20

    CAS  Google Scholar 

  36. G. Kugler and R. Turk, Modeling the Dynamic Recrystallization Under Multi-stage Hot Deformation, Acta Mater., 2004, 52(15), p 4659–4668

    CAS  Google Scholar 

  37. M. Zouari, N. Bozzolo, and R.E. Loge, Mean Field Modelling of Dynamic and Post-dynamic Recrystallization During Hot Deformation of Inconel 718 in the Absence of δ Phase Particles, Mater. Sci. Eng., A, 2016, 655, p 408–424

    CAS  Google Scholar 

  38. H. Mirzadeh, J. Cabrera, A. Najafizadeh, and P. Calvillo, EBSD Study of a Hot Deformed Austenitic Stainless Steel, Mater. Sci. Eng., A, 2012, 538, p 236–245

    CAS  Google Scholar 

  39. A. Rollett, F. Humphreys, G. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, 2004, 2, p 121–167

    Google Scholar 

  40. D.-F. Li, D.-Z. Zhang, S.-d. Liu, Z.-j. Shan, X.-m. Zhang, W. Qin, and S.-Q. Han, Dynamic Recrystallization Behavior of 7085 Aluminum Alloy During Hot Deformation, Trans. Nonferrous Met. Soc. China, 2016, 26(6), p 1491–1497

    CAS  Google Scholar 

  41. C. Zhang, C. Wang, R. Guo, G. Zhao, L. Chen, W. Sun, and X. Wang, Investigation of Dynamic Recrystallization and Modeling of Microstructure Evolution of an Al-Mg-Si Aluminum Alloy During High-temperature Deformation, J. Alloys Compd, 2019, 773, p 59–70

    CAS  Google Scholar 

  42. W. Chen, B. Hu, C. Jia, C. Zheng, and D. Li, Continuous Dynamic Recrystallization During the Transient Deformation in a Ni-30% Fe Austenitic Model Alloy, Mater. Sci. Eng., A, 2019, 751, p 10–14

    CAS  Google Scholar 

  43. L. Li, J. Luo, J. Yan, and M. Li, Dynamic Globularization and Restoration Mechanism of Ti–5Al–2Sn–2Zr–4Mo–4Cr Alloy During Isothermal Compression, J. Alloys Compd., 2015, 622, p 174–183

    CAS  Google Scholar 

  44. D. Ponge and G. Gottstein, Necklace Formation During Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior, Acta Mater., 1998, 46(1), p 69–80

    CAS  Google Scholar 

  45. S. Mandal, A. Bhaduri, and V.S. Sarma, A Study on Microstructural Evolution and Dynamic Recrystallization During Isothermal Deformation of a Ti-modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2011, 42(4), p 1062–1072

    CAS  Google Scholar 

  46. D. Li, Q. Guo, S. Guo, H. Peng, and Z. Wu, The Microstructure Evolution and Nucleation Mechanisms of Dynamic Recrystallization in Hot-deformed Inconel 625 Superalloy, Mater. Des., 2011, 32(2), p 696–705

    CAS  Google Scholar 

  47. H. Kou, Y. Chen, B. Tang, Y. Cui, F. Sun, J. Li, and X. Xue, An Experimental Study on the Mechanism of Texture Evolution During Hot-Rolling Process in a β Titanium Alloy, J. Alloys Compd., 2014, 603, p 23–27

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to financial support from the Jiangsu Province Key Laboratory of High-end Structural Materials (hsm1808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D.S., Shang, X.Y., Wang, W. et al. Dynamic Recrystallization Modeling and Mechanisms in Inconel 690 Alloy during Hot Compressive Deformation. J. of Materi Eng and Perform 29, 7188–7197 (2020). https://doi.org/10.1007/s11665-020-05213-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05213-x

Keywords

Navigation