Skip to main content
Log in

Influence of Tempering in Different Melting Routes on Toughness Behavior of AISI 4340 Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Martensitic microstructure of AISI 4340 steel can be heat treated to achieve the desired mechanical properties. However, mechanical properties degrade owing to the impurities and cleanliness during the steel production. In this work, AISI 4340 steel was produced through three different routes, such as vacuum degassing (VD), electro slag remelting (ESR), and vacuum arc remelting (VAR), followed by austenizing, hardening, and tempering. Further, mechanical characterization such as tensile, hardness, and toughness were carried out in a wide range of tempering temperatures (171-649 °C). A variation in mechanical properties was observed due to the evolution of precipitated carbide with the tempering temperature in all three routes. A thicker carbide layer along the martensitic lath boundary led to higher embrittlement in VD and VAR for tempering regime 171-427 °C. The absence or lesser embrittlement in ESR attributes to the homogeneously distributed fragmented carbides. Martensitic lath coarsening, ferritic phase formation along with the precipitated carbide distribution, significantly enhances the fracture toughness over the impact toughness at higher tempering temperature (> 316 °C). The difference in the mechanical properties in all the three routes is found to be sensitive toward the chemical composition causing a marked difference in the carbide precipitation and its distribution along the martensitic lath boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. W.M. Garrison, Ultrahigh-Strength Steels for Aerospace Applications, JOM, 1990, 42, p 20–24

    Article  CAS  Google Scholar 

  2. Y. Tomita, Development of Fracture Toughness of Ultrahigh Strength Low Alloy Steels for Aircraft and Aerospace Applications, Mater. Sci. Technol., 1991, 7, p 481–489

    Article  CAS  Google Scholar 

  3. T. Demir, M.U. Beyli, and R.O. Yıldırım, Effect of Hardness on the Ballistic Impact Behaviour of High-Strength Steels Against 7.62 mm Armor Piercing Projectiles, J. Mater. Eng. Perform., 2009, 18, p 145–153

    Article  CAS  Google Scholar 

  4. A. Salemi and A. Abdollah-zadeh, The Effect of Tempering Temperature on the Mechanical Properties and Fracture Morphology of a NiCrMoV Steel, Mater. Charact., 2008, 59, p 484–487

    Article  CAS  Google Scholar 

  5. W.S. Lee and T.T. Su, Mechanical Properties and Microstructural Features of AISI, 4340 High-Strength Alloy Steel Under Quenched and Tempered Conditions, J. Mater. Process. Technol., 1999, 87, p 198–206

    Article  Google Scholar 

  6. J.M. Tartaglia, The Effects of Martensite Content on the Mechanical Properties of Quenched and Tempered 0.2%C-Ni-Mo Steels, J. Mater. Eng. Perform., 2010, 19, p 572–584

    Article  CAS  Google Scholar 

  7. J.M. Tartaglia and K.L. Hayrynen, A Comparison of Fatigue Properties of Austempered Versus Quenched and Tempered 4340 Steel, J. Mater. Eng. Perform., 2012, 21, p 1008–1024

    Article  CAS  Google Scholar 

  8. K. Mori, E.W. Lee, W.E. Frazier, K. Niji, G. Battel, A. Tran, E. Iriarte, O. Perez, H. Ruiz, T. Choi, P. Stoyanov, J. Ogren, J. Alrashaid, and O.S. Es-Said, Effect of Tempering and Baking on the Charpy Imapct Energy of Hydrogen-Charged 4340 Steel, J. Mater. Eng. Perform., 2015, 24, p 329–337

    Article  CAS  Google Scholar 

  9. P.K. Jena, K.S. Kumar, and A.K. Singh, Effect of Tempering Temperature on Microstructure, Texture and Mechanical Properties of a High Strength Steel, Int. J. Manuf. Mater. Mech. Eng., 2014, 4, p 33–49

    Google Scholar 

  10. J.P. Materkowski and G. Krauss, Tempered Martensite Embrittlement in SAE 4340 Steel, Metall. Trans. A, 1979, 10, p 1643–1651

    Article  Google Scholar 

  11. N. Bandyopadhyay and C.J. McMahon, The Micro-mechanisms of Tempered Martensite Embrittlement in 4340-Type Steels, Metall. Trans. A, 1983, 14, p 1313–1325

    Article  Google Scholar 

  12. A.A. Hussein, M.T. Abdu, E.M. El-Banna, S.E. Soliman, and M.M. Tash, Interrelation of Steel Composition, Hardening Route, and Tempering Response of Medium Carbon Low-Alloy Steels, J. Mater. Eng. Perform., 2016, 25, p 1463–1473

    Article  CAS  Google Scholar 

  13. A. Abdollah-Zadeh, A. Jafari-Pirlari, and M. Barzegari, Tempered Martensite Embrittlement in a 32NiCrmoV125 Steel, J. Mater. Eng. Perform., 2005, 14, p 569–573

    Article  CAS  Google Scholar 

  14. R.M. Horn and R.O. Ritchie, Mechanisms of Tempered Martensite Embrittlement in Low Alloy Steels, Metall. Trans. A, 1978, 9, p 1039–1053

    Article  Google Scholar 

  15. J. Jung, J. Shin, and S. Lee, Improvement of Anisotropic Mechanical Behaviour by Sulfide Control in Quenched and Tempered 4340 Steel, J. Mater. Eng. Perform., 2015, 24, p 2658–2664

    Article  CAS  Google Scholar 

  16. C.F. Hickey and A.A. Anctil, Split Heat Mechanical Property Comparison of ESR and VAR 4340 Steel, J. Heat. Treat., 1985, 4, p 177–183

    Article  CAS  Google Scholar 

  17. L. Holappa and O. Wijk, Inclusion engineering, in Treatise on Process Metallurgy, (Elsevier, 2014), pp. 347–372

  18. M.G. Hebsur, K.P. Abraham, and Y.V.R.K. Prasad, Effect of Electroslag Refining on the Fracture Toughness and Fatigue Crack Propagation Rates in Heat Treated AISI, 4340 Steel, Eng. Fract. Mech., 1980, 13, p 851–864

    Article  CAS  Google Scholar 

  19. L.I. Xiao-yuan, D. Han, S.H.I. Jie, Influence of Cleanliness on Mechanical Property of 40CrNi2Mo Steel, in Proceedings of Sino Swedish Structural Materials Symposium (2007), p. 1–5

  20. T.A. Lechtenberg, Materials and Molecular Research Division Annual Report, Lawrence Berkeley National Laboratory, University of California, Oakland, 1977

    Google Scholar 

  21. M.G. Hebsur, Recent Attempts of Improving the Mechanical Properties of AISI, 4340 Steel by Control of Microstructure—A Brief Review, J. Mater. Energy Syst., 1982, 4, p 28–37

    Article  Google Scholar 

  22. E.B. Kula, and A.A. Anctil, Tempered Martensite Embrittlement and Fracture Toughness in 4340 Steel, U. S. Army Materials Research Agency (1967)

  23. B.C. Kim, S. Lee, D.Y. Lee, and N.J. Kim, In Situ Fracture Observations on Tempered Martensite Embrittlement in an AlSl 4340 Steel, Metall. Trans. A, 1991, 22, p 1889–1892

    Article  Google Scholar 

  24. G.Y. Lai, W.E. Wood, R.A. Clark, V.F. Zackay, and E.R. Parker, The Effect of Austenitizing Temperature on the Microstructure and Mechanical Properties of As-quenched 4340 Steel, Metall. Trans., 1974, 5, p 1663–1670

    Article  CAS  Google Scholar 

  25. R.O. Ritchie, B. Francis, and W.L. Server, Evaluation of Toughness in AISI, 4340 Alloy Steel Austenitized at Low and High Temperatures, Metall. Trans. A, 1976, 7, p 831–838

    Article  Google Scholar 

  26. M.S. Bhat, Microstructure and Mechanical Properties of AISI 4340 Steel Modified with Aluminium and Silicon, Ph.D. Thesis, University of California, 1977.

  27. C.L. Briant, Role of Carbides in Tempered Martensite Embrittlement, Mater. Sci. Technol., 1989, 5, p 138–147

    Article  CAS  Google Scholar 

  28. A.J. Clarke, M.K. Miller, R.D. Field, D.R. Coughlin, P.J. Gibbs, K.D. Clarke, D.J. Alexander, K.A. Powers, P.A. Papin, and G. Krauss, Atomic and Nanoscale Chemical and Structural Changes in Quenched and Tempered 4340 Steel, Acta Mater., 2014, 77, p 17–27

    Article  CAS  Google Scholar 

  29. J. Daigne, M. Guttmann, and J.P. Naylor, The Influence of Lath Boundaries and Carbide Distribution on the Yield Strength of 0.4% C Tempered Martensitic Steels, Mater. Sci. Eng., 1982, 56, p 1–10

    Article  CAS  Google Scholar 

  30. H.F. Li, S.G. Wang, P. Zang, R.T. Qu, and Z.F. Zang, Crack Propagation Mechanisms of AISI, 4340 Steels with Different Strength and Toughness, Mater. Sci. Eng., A, 2018, 729, p 130–140

    Article  CAS  Google Scholar 

  31. A.J. Clarke, J. Klemm-Toole, K.D. Clarke, D.R. Coughlin, D.T. Pierce, V.K. Euser, J.D. Poplawsky, B. Clausen, D. Brown, J. Almer, P.J. Gibbs, D.J. Alexander, R.D. Field, D.L. Williamson, J.G. Speer, and G. Krauss, Prospectives on Quenching and Tempering 4340 Steel, Metall. Mater. Trans. A, 2020, 51A, p 4984–5005

    Article  Google Scholar 

  32. M. Saeglitz and G. Krauss, Deformation, Fracture, and Mechanical Properties of Low-Temperature-Tempered Martensite in SAE 43xx Steels, Metall. Mater. Trans. A, 1997, 28, p 377–387

    Article  Google Scholar 

  33. F. Liu, X. Lin, M. Song, H. Yang, K. Song, P. Guo, and W. Huang, Effect of Tempering Temperature on Microstructure and Mechanical Properties of Laser Solid Formed 300 M Steel, J. Alloys Compd., 2016, 689, p 225–232

    Article  CAS  Google Scholar 

  34. E. Virtanen, C.J. Van Tyne, B.S. Levy, and G. Brada, The Tempering Parameter for Evaluating Softening of Hot and Warm Forging Die Steels, J. Mater. Process. Technol., 2013, 213, p 1364–1369

    Article  CAS  Google Scholar 

  35. M.O. Lai and W.G. Ferguson, Relationship Between the Shear Lip Size and the Fracture Toughness, Mater. Sci. Eng., 1980, 45, p 183–188

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author would like to thank Mr. Sandip Temakar and Dr. M. Venkatraman from Saarloha Advanced Materials Pvt. Ltd. for providing the material and experimental support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti S. Jha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manokaran, M., Kashinath, A.S., Jha, J.S. et al. Influence of Tempering in Different Melting Routes on Toughness Behavior of AISI 4340 Steel. J. of Materi Eng and Perform 29, 6748–6760 (2020). https://doi.org/10.1007/s11665-020-05164-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05164-3

Keywords

Navigation