J.W. Qiao, M.L. Bao, Y.J. Zhao, H.J. Yang, Y.C. Wu, Y. Zhang et al., Rare-Earth High Entropy Alloys with Hexagonal Close-Packed Structure, J. Appl. Phys., 2018, 124, p 195101
Google Scholar
M.C. Gao, P.D. Jablonski, J.A. Hawk, D.E, Alman. High-Entropy Alloys: Formation and Properties, in ASME 2018 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries (2018).
H. Jiang, K. Han, X. Gao, Y. Lu, Z. Cao, M.C. Gao et al., A New Strategy to Design Eutectic High-Entropy Alloys Using Simple Mixture Method, Mater. Des., 2018, 142, p 101–105
CAS
Google Scholar
R. Feng, M.C. Gao, C. Zhang, W. Guo, J.D. Poplawsky, F. Zhang et al., Phase Stability and Transformation in a Light-Weight High-Entropy Alloy, Acta Mater., 2018, 146, p 280–293
CAS
Google Scholar
T. Zuo, M.C. Gao, L. Ouyang, X. Yang, Y. Cheng, R. Feng et al., Tailoring Magnetic Behavior of CoFeMnNiX (X = Al, Cr, Ga, Sn) High Entropy Alloys by Metal Doping, Acta Mater., 2017, 130, p 10–18
CAS
Google Scholar
M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom et al., Thermodynamics of Concentrated Solid Solution Alloys, Curr. Opin. Solid State Mater. Sci., 2017, 21, p 238–251
CAS
Google Scholar
M.C. Gao, P. Gao, J.A. Hawk, L.Z. Ouyang, D.E. Alman, and M. Widom, Computational Modeling of High-Entropy Alloys: Structures: Thermodynamics and Elasticity, J. Mater. Res., 2017, 32, p 3627–3641
CAS
Google Scholar
H.W. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, H.F. Zhou et al., NbTaV-(Ti, W) Refractory High-Entropy Alloys: Experiments and Modeling, Mater. Sci. Eng. A, 2016, 674, p 203–211
CAS
Google Scholar
H. Yao, J.-W. Qiao, M.C. Gao, J.A. Hawk, S.-G. Ma, and H. Zhou, Correction to Yao, H.; Qiao, J.-W.; Gao, M.C.; Hawk, J.A.; Ma, S.-G.; Zhou, H. MoNbTaV Medium-Entropy Alloy, Entropy, 2016, 18, p 189
Google Scholar
H. Yao, J.-W. Qiao, M.C. Gao, J.A. Hawk, S.-G. Ma, and H. Zhou, MoNbTaV Medium-Entropy Alloy, Entropy, 2016, 18, p 189
Google Scholar
M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, and J.A. Hawk, High-Entropy Alloys in Hexagonal Close-Packed Structure, Metall. Mater. Trans. A, 2016, 47, p 3322–3332
CAS
Google Scholar
S. Antonov, M. Detrois, and S. Tin, Design of Novel Precipitate-Strengthened Al-Co-Cr-Fe-Nb-Ni High-Entropy Superalloys, Metall. Mater. Trans. A, 2018, 49, p 305–320
CAS
Google Scholar
M. Detrois, S. Antonov, and S. Tin, Phase Stability and Thermodynamic Database Validation in a Set of Non-equiatomic Al-Co-Cr-Fe-Nb-Ni High-Entropy Alloys, Intermetallics, 2019, 104, p 103–112
CAS
Google Scholar
M.C. Gao, C.S. Carney, Ö.N. Doğan, P.D. Jablonksi, J.A. Hawk, and D.E. Alman, Design of Refractory High-Entropy Alloys, JOM, 2015, 67, p 2653–2669
CAS
Google Scholar
R. Feng, M.C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J.A. Hawk, Y. Zhang, and P.K. Liaw, Design of Light-Weight High-Entropy Alloys, Entropy, 2016, 18(9), p 333. https://doi.org/10.3390/e18090333
CAS
Article
Google Scholar
P.D. Jablonski, J.J. Licavoli, M.C. Gao, and J.A. Hawk, Manufacturing of High Entropy Alloys, JOM, 2015, 67, p 2278–2287
CAS
Google Scholar
J.J. Licavoli, M.C. Gao, J.S. Sears, P.D. Jablonski, and J.A. Hawk, Microstructure and Mechanical Behavior of High-Entropy Alloys, J. Mater. Eng. Perform., 2015, 24, p 3685–3698
CAS
Google Scholar
M. Detrois, S. Antonov, S. Tin, P.D. Jablonski, and J.A. Hawk, Hot Deformation Behavior and Flow Stress Modeling of a Ni-Based Superalloy, Mater. Charact., 2019, 157, p 109915
CAS
Google Scholar
D. Li, M.C. Gao, J.A. Hawk, and Y. Zhang, Annealing Effect for the Al0.3CoCrFeNi High-Entropy Alloy Fibers, J. Alloys Compd., 2019, 778, p 23–29
CAS
Google Scholar
M. Chen, X.H. Shi, H. Yang, P.K. Liaw, M.C. Gao, J.A. Hawk et al., Wear Behavior of Al0.6CoCrFeNi High-Entropy Alloys: Effect of Environments, J. Mater. Res., 2018, 33, p 3310–3320
CAS
Google Scholar
H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, and M.C. Gao, Mechanical Properties of Refractory High-Entropy Alloys: Experiments and Modeling, J. Alloys Compd., 2017, 696, p 1139–1150
CAS
Google Scholar
M. Detrois, P.D. Jablonski, S. Antonov, S. Li, Y. Ren, S. Tin et al., Design and Thermomechanical Properties of a γ′ Percipitate-Strengthened Ni-Based Superalloy with High Entropy γ Matrix, J. Alloys Compd., 2019, 792, p 550–560
CAS
Google Scholar
G.R. Holcomb, J. Tylczak, and C. Carney, Oxidation of CoCrFeMnNi High Entropy Alloys, JOM, 2015, 67, p 2326–2339
CAS
Google Scholar
Ö.N. Doğan, B.C. Nielsen, and J.A. Hawk, Elevated-Temperature Corrosion of CoCrCuFeNiAl0.5Bx High-Entropy Alloys in Simulated Syngas Containing H2S, Oxid. Met., 2013, 80, p 177–190
Google Scholar
A.A. Rodriguez, J.H. Tylczak, M.C. Gao, P.D. Jablonski, M. Detrois, M. Ziomek-Moroz, et al. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under Sodium Chloride Aqueous Conditions. Adv. Mater. Sci. Eng.. 2018;2018:11.
A. Rodriguez, J.H. Tylczak, and M. Ziomek-Moroz, Corrosion Behavior of CoCrFeMnNi High-Entropy Alloys (HEAs) Under Aqueous Acidic Conditions, ECS Trans., 2017, 77, p 741–752
CAS
Google Scholar
A. Di Gianfrancesco, S.T. Vipraio, and D. Venditti, Long Term Microstructural Evolution of 9-12%Cr Steel Grades for Steam Power Generation Plants, Procedia Eng., 2013, 55, p 27–35
Google Scholar
W. Xia, X. Zhao, L. Yue, and Z. Zhang, Microstructural Evolution and Creep Mechanisms in Ni-Based Single Crystal Superalloys: A Review, J. Alloys Compd., 2020, 819, p 152954
CAS
Google Scholar
E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, and N.G. Jones, Precipitation in the Equiatomic High-Entropy Alloy CrMnFeCoNi, Scr. Mater., 2016, 113, p 106–109
CAS
Google Scholar
G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, and E.P. George, Temperature Dependencies of the Elastic Moduli and Thermal Expansion Coefficient of an Equiatomic, Single-Phase CoCrFeMnNi High-Entropy Alloy, J. Alloys Compd., 2015, 623, p 348–353
CAS
Google Scholar
T. Cao, J. Shang, J. Zhao, C. Cheng, R. Wang, and H. Wang, The Influence of Al Elements on the Structure and the Creep Behavior of AlxCoCrFeNi High Entropy Alloys, Mater. Lett., 2016, 164, p 344–347
CAS
Google Scholar
F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler et al., Decomposition of the Single-Phase High-Entropy Alloy CrMnFeCoNi After Prolonged Anneals at Intermediate Temperatures, Acta Mater., 2016, 112, p 40–52
CAS
Google Scholar
S.I. Hong, J. Moon, S.K. Hong, and H.S. Kim, Thermally Activated Deformation and the Rate Controlling Mechanism in CoCrFeMnNi High Entropy Alloy, Mater. Sci. Eng. A, 2017, 682, p 569–576
CAS
Google Scholar
Y.B. Kang, S.H. Shim, K.H. Lee, and S.I. Hong, Dislocation Creep Behavior of CoCrFeMnNi High Entropy Alloy at Intermediate Temperatures, Mater. Res. Lett., 2018, 6, p 689–695
CAS
Google Scholar
C. Cao, J. Fu, T. Tong, Y. Hao, P. Gu, H. Hao et al., Intermediate-Temperature Creep Deformation and Microstructural Evolution of an Equiatomic FCC-Structured CoCrFeNiMn High-Entropy Alloy, Entropy, 2018, 20, p 960
CAS
Google Scholar
D.-H. Lee, M.-Y. Seok, Y. Zhao, I.-C. Choi, J. He, Z. Lu et al., Spherical Nanoindentation Creep Behavior of Nanocrystalline and Coarse-Grained CoCrFeMnNi High-Entropy Alloys, Acta Mater., 2016, 109, p 314–322
CAS
Google Scholar
B. Wang, H. He, M. Naeem, S. Lan, S. Harjo, T. Kawasaki et al., Deformation of CoCrFeNi High Entropy Alloy at Large Strain, Scr. Mater., 2018, 155, p 54–57
CAS
Google Scholar
T. Zhang, L. Xin, F. Wu, R. Zhao, J. Xiang, M. Chen et al., Microstructure and Mechanical Properties of FexCoCrNiMn High-Entropy Alloys, J. Mater. Sci. Technol., 2019, 35, p 2331–2335
Google Scholar
S. Chen, W. Li, X. Xie, J. Brechtl, B. Chen, P. Li et al., Nanoscale Serration and Creep Characteristics of Al0.5CoCrCuFeNi High-Entropy Alloys, J. Alloys Compd., 2018, 752, p 464–475
CAS
Google Scholar
J. Dean, J. Campbell, G. Aldrich-Smith, and T.W. Clyne, A Critical Assessment of the “Stable Indenter Velocity” Method for Obtaining the Creep Stress Exponent from Indentation Data, Acta Mater., 2014, 80, p 56–66
CAS
Google Scholar
J. Campbell, J. Dean, and T.W. Clyne, Limit Case Analysis of the “Stable Indenter Velocity” Method for Obtaining Creep Stress Exponents from Constant Load Indentation Creep Tests, Mech. Time-Depend. Mater., 2017, 21, p 31–43
CAS
Google Scholar
P.D. Jablonski and J.A. Hawk, Homogenizing Advanced Alloys: Thermodynamic and Kinetic Simulations Followed by Experimental Results, J. Mater. Eng. Perform., 2017, 26, p 4–13
CAS
Google Scholar
P.J.J. Hawk, Considerations for Homogenizing Alloys, in 8th International Symposium on Superalloy 718 and Derivatives, pp. 823–840 (2014).
P.D. Jablonski, J.A. Hawk, Thermodynamic and Kinetic Simulation and Experimental Results Homogenizing Advanced Alloys, in Conference Proceedings of 23rd IFHTSE Congress Advanced Thermal Processing IV. Savannah, GA2016, p. 10.
M. Detrois, P.D. Jablonski, Trace Element Control in Binary Ni-25Cr and Ternary Ni-30C0-30Cr Master Alloy Castings, in ed. by M.J.M. Krane RMW, S. Rudoler, A.J. Elliott, A. Pate. Proceeding of the Liquid Metal Processing & Casting Conference (2017), pp. 75–84.
International A. Standard Guide for Elemental Analysis by Wavelength Dispersive X-Ray Fluorescence Spectrometry. West Conshohocken, PA (2013).
International A. Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Inert Gas Fusion Techniques. West Conshohocken, PA (2018).
ASTM E139-11, Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials. (ASTM International, West Conshohocken, PA, 2018)
F.R. Larson and J. Miller, A Time-Temperature Relationship for Rupture and Creep Stresses, Trans. ASME, 1952, 74, p 765–771
Google Scholar
F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy, Acta Mater., 2013, 61, p 5743–5755
CAS
Google Scholar
M.-Y. Kim, S.-M. Hong, K.-H. Lee, W.-S. Jung, Y.-S. Lee, Y.-K. Lee et al., Mechanism for Z-Phase Formation in 11CrMoVNbN Martensitic Heat-Resistant Steel, Mater. Charact., 2017, 129, p 40–45
CAS
Google Scholar
A. Fedoseeva, I. Nikitin, N. Dudova, and R. Kaibyshev, Strain-Induced Z-Phase Formation in a 9% Cr-3% Co Martensitic Steel During Creep at Elevated Temperature, Mater. Sci. Eng. A, 2018, 724, p 29–36
CAS
Google Scholar
High Temperature Characteristics of Stainless Steels: Designers’ Handbook Series No. 9004, American Iron and Steel Institute, 2011.: American Iron and Steel Institute; 2011.
F.T. Furillo, S. Purushothaman, and J.K. Tien, Understanding the Larson-Miller Parameter, Scr. Metall., 1977, 11, p 493–496
CAS
Google Scholar
K.A. Rozman, M.A. Carl, M. Kapoor, Ö.N. Doğan, J.A. Hawk, Creep Performance of Transient Liquid Phase Bonded Haynes 230 Alloy. Mater. Sci. Eng. A 2019:138477.
G. Pilloni, E. Quadrini, and S. Spigarelli, Interpretation of the Role of Forest Dislocations and Precipitates in High-Temperature Creep in a Nb-Stabilised Austenitic Stainless Steel, Mater. Sci. Eng. A, 2000, 279, p 52–60
Google Scholar
D.-B. Park, S.-M. Hong, K.-H. Lee, M.-Y. Huh, J.-Y. Suh, S.-C. Lee et al., High-Temperature Creep Behavior and Microstructural Evolution of an 18Cr9Ni3CuNbVN Austenitic Stainless Steel, Mater. Charact., 2014, 93, p 52–61
CAS
Google Scholar
K.A. Rozman, M. Detrois, P. Jablonski, M. Gao, and J. Hawk, High Temperature Creep Behavior of Face Centered Cubic High Entropy Alloys. TMS2019, High Entropy Alloys VII: synthesis and mechanical properties (San Antonio, TX, USA, 2019)
K.A. Rozman, M. Detrois, P. Jablonski, M. Gao, and J. Hawk, Creep Performance of Single Phase FCC High Entropy Alloys, in TMS 2019 Annual (San Antonio, TX, 2019).
K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Sluggish Diffusion in Co–Cr–Fe–Mn–Ni High-Entropy Alloys, Acta Mater., 2013, 61, p 4887–4897
CAS
Google Scholar
M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, and S.V. Divinski, Bulk Tracer Diffusion in CoCrFeNi and CoCrFeMnNi High Entropy Alloys, Acta Mater., 2018, 146, p 211–224
CAS
Google Scholar
F.R.N. Nabarro, Deformation of Crystals by the Motion of Single Lonsin Report of a Conference on the Strength of Solids. Physical Society. Bristol, U.K., (1948), pp. 75–90.
R.L. Coble, A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials, J. Appl. Phys., 1963, 34, p 1679–1682
Google Scholar
C. Herring, Diffusional Viscosity of a Polycrystalline Solid, J. Appl. Phys., 1950, 21, p 437–445
Google Scholar
M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials, 2nd edn. (Cambridge University Press, Cambridge, 2009)
Google Scholar
J.Y. He, C. Zhu, D.Q. Zhou, W.H. Liu, T.G. Nieh, and Z.P. Lu, Steady State Flow of the FeCoNiCrMn High Entropy Alloy at Elevated Temperatures, Intermetallics, 2014, 55, p 9–14
CAS
Google Scholar
E.C. Monkman and N.J. Grant, An Empirical Relationship between Rupture Life and Minimum Creep Rate in Creep-Rupture Tests, Proc. ASTM., 1956, 56, p 593
Google Scholar
M. Ashby and B. Dyson, Creep Damage Mechanics and Micromechanisms, Fracture, 1984, 84, p 3–30
Google Scholar
A. Cocks and M. Ashby, Intergranular Fracture During Power-Law Creep Under Multiaxial Stresses, Metal Sci., 1980, 14, p 395–402
Google Scholar
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345, p 1153–1158
CAS
Google Scholar
ASM metals handbook. Metals Park, OH: American Society for Metals; 1985.
K.A. Rozman, M. Detrois, P.D. Jablonski, J.A. Hawk. Mechanical Performance of Various INCONEL® 740/740H Alloy Compositions for Use in A-USC Castings, in Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications (Springer, 2018). p. 611–627.