Skip to main content
Log in

Effect of Multiwalled Carbon Nanotubes on Elevated Temperature Tensile and Wear Behavior of Al2024 Matrix Composites Fabricated by Stir Casting and Hot Extrusion

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, aluminum alloy matrix composites reinforced with MWCNT particles by 0.5 wt.% were fabricated by a new developed technique, consisting of semi-powder metallurgy and stir casting processes. Then, hot extrusion process was applied to the composite materials. Phase analysis and microstructure investigations were performed for the as-cast and extruded samples. Hardness test was conducted, and tensile tests were applied at room, 150 and 250 °C. The tribological performances of unreinforced alloy and MWCNT-reinforced composite were examined at room, 150 and 250 °C as well. The results showed that hardness of base aluminum alloy was improved. The peaks belonging to the MWCNT were detected by x-ray diffraction (XRD) analysis. The incorporation of MWCNT presents strengthening effect on the mechanical properties at all test temperatures. The wear rate generally decreased with the addition of MWCNT for all test conditions. Extrusion process had a positive effect to enhance wear and hardness behavior. Abrasive, adhesive, oxidative and thermal wear mechanisms were observed by scanning electron microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.E. Shin and D.H. Bae, Fatigue Behavior of Al2024 Alloy-Matrix Nanocomposites Reinforced with Multi-Walled Carbon Nanotubes, Compos. Part B Eng., 2018, 134, p 61–68

    Article  CAS  Google Scholar 

  2. Z.Y. Liu, B.L. Xiao, W.G. Wang, and Z.Y. Ma, Singly Dispersed Carbon Nanotube/Aluminum Composites Fabricated by Powder Metallurgy Combined with Friction Stir Processing, Carbon, 2012, 50(5), p 1843–1852

    Article  CAS  Google Scholar 

  3. W. Zhou, S. Bang, H. Kurita, T. Miyazaki, Y. Fan, and A. Kawasaki, Interface and Interfacial Reactions in Multi-Walled Carbon Nanotube-Reinforced Aluminum Matrix Composites, Carbon, 2016, 96, p 919–928

    Article  CAS  Google Scholar 

  4. B. Chen, S. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi, and K. Kondoh, An Approach for Homogeneous Carbon Nanotube Dispersion in al Matrix Composites, Mater. Des., 2015, 72, p 1–8

    Article  CAS  Google Scholar 

  5. Z.Y. Liu, S.J. Xu, B.L. Xiao, P. Xue, W.G. Wang, and Z.Y. Ma, Effect of Ball-Milling Time on Mechanical Properties of Carbon Nanotubes Reinforced Aluminum Matrix Composites, Compos. Part Appl. Sci. Manuf., 2012, 43(12), p 2161–2168

    Article  CAS  Google Scholar 

  6. M.E. Turan, Investigation of Mechanical Properties of Carbonaceous (MWCNT, GNPs and C60) Reinforced Hot-Extruded Aluminum Matrix Composites, J. Alloys Compd., 2019, 788, p 352–360

    Article  CAS  Google Scholar 

  7. D.K. Lim, T. Shibayanagi, and A.P. Gerlich, Synthesis of Multi-Walled CNT Reinforced Aluminium Alloy Composite via Friction Stir Processing, Mater. Sci. Eng. A, 2009, 507(1), p 194–199

    Article  Google Scholar 

  8. J. Liao, M.-J. Tan, and I. Sridhar, Spark Plasma Sintered Multi-Wall Carbon Nanotube Reinforced Aluminum Matrix Composites, Mater. Des., 2010, 31, p S96–S100

    Article  CAS  Google Scholar 

  9. Q. Li, C.A. Rottmair, and R.F. Singer, CNT Reinforced Light Metal Composites Produced by Melt Stirring and by High Pressure Die Casting, Compos. Sci. Technol., 2010, 70(16), p 2242–2247

    Article  CAS  Google Scholar 

  10. M. Rashad, F. Pan, Z. Yu, M. Asif, H. Lin, and R. Pan, Investigation on Microstructural, Mechanical and Electrochemical Properties of Aluminum Composites Reinforced with Graphene Nanoplatelets, Prog. Nat. Sci. Mater. Int., 2015, 25(5), p 460–470

    Article  CAS  Google Scholar 

  11. C.L. Xu, B.Q. Wei, R.Z. Ma, J. Liang, X.K. Ma, and D.H. Wu, Fabrication of Aluminum-Carbon Nanotube Composites and Their Electrical Properties, Carbon, 1999, 37(5), p 855–858

    Article  CAS  Google Scholar 

  12. H. Izadi and A.P. Gerlich, Distribution and Stability of Carbon Nanotubes during Multi-Pass Friction Stir Processing of Carbon Nanotube/Aluminum Composites, Carbon, 2012, 50(12), p 4744–4749

    Article  CAS  Google Scholar 

  13. N. Al-Aqeeli, K. Abdullahi, C. Suryanarayana, T. Laoui, and S. Nouari, Structure of Mechanically Milled CNT-Reinforced Al-Alloy Nanocomposites, Mater. Manuf. Process., 2013, 28(9), p 984–990

    CAS  Google Scholar 

  14. M.E. Turan, Y. Sun, F. Aydin, H. Zengin, Y. Turen, and H. Ahlatci, Effects of Carbonaceous Reinforcements on Microstructure and Corrosion Properties of Magnesium Matrix Composites, Mater. Chem. Phys., 2018, 218, p 182–188

    Article  CAS  Google Scholar 

  15. M.E. Turan, Y. Sun, F. Aydın, and Y. Akgul, Influence of Multi-Wall Carbon Nanotube Content on Dry and Corrosive Wear Performances of Pure Magnesium, J. Compos. Mater., 2018, 52(23), p 3127–3135

  16. Elevated Temperature Tensile Properties and Thermal Expansion of CNT/2009Al Composites—ScienceDirect,” n.d., https://www.sciencedirect.com/science/article/pii/S0266353812002904. Accessed 26 December 2019.

  17. W.S. Miller and F.J. Humphreys, Strengthening Mechanisms in Particulate Metal Matrix Composites, Scr. Metall. Mater., 1991, 25(1), p 33–38

    Article  CAS  Google Scholar 

  18. “Dislocation Generation Due to Differences between the Coefficients of Thermal Expansion—ScienceDirect,” n.d., https://www.sciencedirect.com/science/article/abs/pii/0025541686902612. Accessed 26 December 2019.

  19. M. Zhou, X. Qu, L. Ren, L. Fan, Y. Zhang, Y. Guo, G. Quan, Q. Tang, B. Liu, and H. Sun, The Effects of Carbon Nanotubes on the Mechanical and Wear Properties of AZ31 Alloy, Materials, 2017, 10, p 1385

    Article  Google Scholar 

  20. On the Strength of Discontinuous Silicon Carbide Reinforced Aluminum Composites—ScienceDirect,” n.d., https://www.sciencedirect.com/science/article/pii/0036974886902103. Accessed 26 December 2019.

  21. Mechanical and Thermal Properties of Nanocarbon-Reinforced Aluminum Matrix Composites at Elevated Temperatures—ScienceDirect,” n.d., https://www.sciencedirect.com/science/article/pii/S135983681630186X. Accessed 26 December 2019.

  22. Z. Zhang and D.L. Chen, Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength, Scr. Mater., 2006, 54(7), p 1321–1326

    Article  CAS  Google Scholar 

  23. M. Rashad, F. Pan, A. Tang, and M. Asif, Effect of Graphene Nanoplatelets Addition on Mechanical Properties of Pure Aluminum Using a Semi-Powder Method, Prog. Nat. Sci. Mater. Int., 2014, 24(2), p 101–108

    Article  CAS  Google Scholar 

  24. “CiNii Articles—The Cleavage Strength of Polycrystals,” n.d., https://ci.nii.ac.jp/naid/10019881123/. Accessed 26 December 2019.

  25. J.-W. An, D.-H. You, and D.-S. Lim, Tribological Properties of Hot-Pressed Alumina–CNT Composites, Wear, 2003, 255(1–6), p 677–681

    Article  CAS  Google Scholar 

  26. M.D. Bermudez, G. Martınez-Nicolás, F.J. Carrion, I. Martınez-Mateo, J.A. Rodríguez, and E.J. Herrera, Dry and Lubricated Wear Resistance of Mechanically-Alloyed Aluminium-Base Sintered Composites, Wear, 2001, 248(1–2), p 178–186

    Article  CAS  Google Scholar 

  27. L. Kumar, S. Nasimul Alam, and S.K. Sahoo, Mechanical Properties, Wear Behavior and Crystallographic Texture of Al–Multiwalled Carbon Nanotube Composites Developed by Powder Metallurgy Route, J. Compos. Mater., 2017, 51(8), p 1099–1117

    Article  CAS  Google Scholar 

  28. H. Zengin, Y. Turen, M.E. Turan, and F. Aydın, Evolution of Microstructure, Residual Stress, and Tensile Properties of Mg–Zn–Y–La–Zr Magnesium Alloy Processed by Extrusion, Acta Metall. Sin. Engl. Lett., 2019, 32, p 1309–1319

  29. M.M. Bastwros, A.M. Esawi, and A. Wifi, Friction and Wear Behavior of Al–CNT Composites, Wear, 2013, 307(1–2), p 164–173

    Article  CAS  Google Scholar 

  30. A. Lekatou, A.E. Karantzalis, A. Evangelou, V. Gousia, G. Kaptay, Z. Gácsi, P. Baumli, and A. Simon, Aluminium Reinforced by WC and TiC Nanoparticles (Ex-Situ) and Aluminide Particles (in-Situ): Microstructure, Wear and Corrosion Behaviour, Mater. Des. 1980-2015, Elsevier, 2015, 65, p 1121–1135.

  31. A. Nieto, H. Yang, L. Jiang, and J.M. Schoenung, Reinforcement Size Effects on the Abrasive Wear of Boron Carbide Reinforced Aluminum Composites, Wear, Elsevier, 2017, 390, p 228–235

    Article  Google Scholar 

  32. S. Saravanan, M. Ravichandran, A.V. Balan, and P. Senthilkumar, Synthesis and Abrasive Wear Performance of Stir Cast AA6063-TiC Composite Materials, SN Appl. Sci., 2019, 1(12), p 1585

    Article  CAS  Google Scholar 

  33. S. Ramanathan, B. Vinod, P. Narayanasamy, and M. Anandajothi, Dry Sliding Wear Mechanism Maps of Al–7Si–0.3 Mg Hybrid Composite: Novel Approach of Agro-Industrial Waste Particles to Reduce Cost of Material, J. Bio- Tribo-Corros., 2019, 5(2), p 32

    Article  Google Scholar 

  34. S. Huang, J. Teng, F. Jiang, D. Fu, and H. Zhang, “Tribological Behaviour of Al-8.42 Fe-1.29 V-1.93 Si/SiCp Composites under Dry Sliding Conditions,” IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2019, p 032111.

  35. Q. Zhang, S. Wei, J. Gu, and M. Qi, High-Temperature Dry Sliding Wear Behavior of Al–12Si–CuNiMg Alloy and Its Al 2 O 3 Fiber-Reinforced Composite, Met. Mater. Int., Springer, 2020, p 1–11.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Rashad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turan, M.E., Rashad, M., Zengin, H. et al. Effect of Multiwalled Carbon Nanotubes on Elevated Temperature Tensile and Wear Behavior of Al2024 Matrix Composites Fabricated by Stir Casting and Hot Extrusion. J. of Materi Eng and Perform 29, 5227–5237 (2020). https://doi.org/10.1007/s11665-020-05032-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05032-0

Keywords

Navigation