Skip to main content
Log in

Analysis on the Fatigue Properties of Shot-Peened Al-Si-Mg Alloy and Its Fatigue Life Prediction

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ceramic micro-shot peening (CMSP) and steel micro-shot peening (SMSP) were utilized to investigate the effect of micro-shot peening (MSP) on the high-cycle fatigue properties of Al-7Si-0.3Mg casting aluminum alloy in a previous study. However, the improvement effects of CMSP and SMSP on the fatigue strength (at 5 × 107 cycles) were only 33% because the depth of harden layers was only 20 and 55 μm while the depth of compressive residual stress affected layers was only 37 and 68 μm. In this study, conventional shot peening (CSP) was utilized, and the results were compared with those of MSP, with the expectation that CSP would provide a greater improvement in the fatigue strength. The affected surface layers of the shot-peened specimens were characterized using surface morphology, microhardness, and residual stress analyses. In addition, the effect of CSP on the fatigue strength at 5 × 107 cycles was investigated using a rotating bending fatigue test (R = − 1). An investigation of the extensive surface compressive residual stress relaxation process for the three different shot-peened specimens during cyclic loading was conducted using x-ray diffraction. In addition, the initiation sites for fatigue cracks on the fracture surface were observed using scanning electron microscopy. Furthermore, the fatigue life of the samples with the internal casting defect failure mode was predicted using linear elastic fracture mechanics, while that for samples with the surface crack initiation failure mode was predicted using the modified Morrow model considering the residual stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y.H. Fan, S.H. Liu, and Y. Wang, Application of EN AC-AlSi7Mg0.6 Aluminum Alloy for Railway Contact Network, Hot Work. Technol., 2015, 7, p 108–109

    Google Scholar 

  2. M. Benedetti, V. Fontanari, P. Scardi, C.A. Ricardo, and M. Bandini, Reverse Bending Fatigue of Shot Peened 7075-T651 Aluminium Alloy: The Role of Residual Stress Relaxation, Int. J. Fatigue, 2009, 31(8–9), p 1225–1236

    CAS  Google Scholar 

  3. J. González, S. Bagherifard, M. Guagliano, and I.F. Pariente, Influence of Different Shot Peening Treatments on Surface State and Fatigue Behaviour of Al 6063 Alloy, Eng. Fract. Mech., 2017, 185, p 72–81

    Google Scholar 

  4. X. Li, J. Zhang, B. Yang, J. Zhang, M. Wu, and L. Lu, Effect of Micro-shot Peening, Conventional Shot Peening and Their Combination on Fatigue Property of EA4T Axle Steel, J. Mater. Process. Technol., 2020, 275, p 116320

    CAS  Google Scholar 

  5. S. Kikuchi, Y. Nakamura, K. Nambu, and M. Ando, Effect of Shot Peening Using Ultra-Fine Particles on Fatigue Properties of 5056 Aluminum Alloy under Rotating Bending, Mater. Sci. Eng. A, 2016, 652, p 279–286

    CAS  Google Scholar 

  6. K. Oguri, Fatigue Life Enhancement of Aluminum Alloy for Aircraft by Fine Particle Shot Peening (FPSP), J. Mater. Process. Technol., 2011, 211(8), p 1395–1399

    CAS  Google Scholar 

  7. K. Oguri, T. Sekigawa, and A. Inoue, Fatigue Property Enhancement of Aircraft Metallic Materials by Fine Particle Shot Peening, Bull. Jpn. Inst. Met., 2008, 47, p 553–559

    CAS  Google Scholar 

  8. D.J. Chadwick, S. Ghanbari, D.F. Bahr, and M.D. Sangid, Crack Incubation in Shot Peened AA7050 and Mechanism for Fatigue Enhancement, Fatigue Fract. Eng. Mater. Struct., 2018, 41(1), p 71–83

    Google Scholar 

  9. H. Luong and M.R. Hill, The Effects of Laser Peening on High-Cycle Fatigue in 7085-T7651 Aluminum Alloy, Mater. Sci. Eng. A, 2008, 477(1–2), p 208–216

    Google Scholar 

  10. E. Maleki, O. Unal, and K.R. Kashyzadeh, Efficiency Analysis of Shot Peening Parameters on Variations of Hardness, Grain Size and Residual Stress via Taguchi Approach, Met. Mater. Int., 2019, 25, p 1–12

    Google Scholar 

  11. J.H. Zhang, X.Q. Cheng, Q.X. Xia, and J.Y. Li, Influence of Laser Shot Peening Parameters on the Surface Hardness and Roughness of 7075 Aluminum Alloy. In Materials Science Forum (Vol. 920, pp. 83–88). Trans Tech Publications (2018)

  12. R. Ramos, N. Ferreira, J.A.M. Ferreira, C. Capela, and A.C. Batista, Improvement in Fatigue Life of Al 7475-T7351 Alloy Specimens by Applying Ultrasonic and Microshot Peening, Int. J. Fatigue, 2016, 92, p 87–95

    CAS  Google Scholar 

  13. A. Turnbull, E.R. De Los Rios, R.B. Tait, C. Laurant, and J.S. Boabaid, Improving the Fatigue Crack Resistance of Waspaloy by Shot Peening, Fatigue Fract. Eng. Mater. Struct., 1998, 21(12), p 1513–1524

    CAS  Google Scholar 

  14. M.Z. Wu, J.W. Zhang, G.M. Mei, J.X. Zhang, and X. Li, Effects of Fine Particle Shot Peening Treatment on Fatigue Properties of Al-7Si-0.3Mg Alloy, J. Mater. Eng. Perform., 2019, 28(5), p 2600–2609

    CAS  Google Scholar 

  15. N. Li, H.T. Li, J.Y. Zhou, H.T. Liu, C.K. Liu, and S.Y. Qu, Influence of Different Surface Treatments on Fatigue Life of 7050 Al Alloy, Mater. Sci. Forum, 2019, 944, p 142–148

    Google Scholar 

  16. K. Dalaei, B. Karlsson, and L.E. Svensson, Stability of Shot Peening Induced Residual STRESSES and Their Influence on Fatigue Lifetime, Mater. Sci. Eng. A, 2011, 528(3), p 1008–1015

    Google Scholar 

  17. Kodama, S., The Behavior of Residual Stress during Fatigue Stress Cycles, in Proceedings of the International Conference on Mechanical Behavior of Metals II, Society of Material Science, Kyoto, 1972, vol. 2, pp. 111–118.

  18. P. Li, P.D. Lee, D.M. Maijer, and T.C. Lindley, Quantification of the Interaction Within Defect Populations on Fatigue Behavior in an Aluminum Alloy, Acta Mater., 2009, 57(12), p 3539–3548

    CAS  Google Scholar 

  19. I. Serrano-Munoz, J.Y. Buffiere, R. Mokso, C. Verdu, and Y. Nadot, Location, Location & Size: Defects Close to Surfaces Dominate Fatigue Crack Initiation, Sci. Rep., 2017, 7, p 45239

    CAS  Google Scholar 

  20. S.E. Stanzl-Tschegg, H.R. Mayer, A. Beste, and S. Kroll, Fatigue and Fatigue Crack Propagation in AlSi7Mg Cast Alloys under In-Service Loading Conditions, Int. J. Fatigue, 1995, 17(2), p 149–155

    CAS  Google Scholar 

  21. Q.G. Wang, D. Apelian, and D.A. Lados, Fatigue Behavior of A356-T6 Aluminum Cast Alloys: Part I—Effect of Casting Defects, J. Light Met., 2001, 1(1), p 73–84

    CAS  Google Scholar 

  22. M.E. Seniw, M.E. Fine, E.Y. Chen, M. Meshii, and J. Gray, Relation of Defect Size and Location to Fatigue Failure in Al Alloy A356 Cast Specimens (No. CONF-970980-). The Minerals, Metals and Materials Society, 1997, Warrendale, PA

  23. S. Jana, R.S. Mishra, J.B. Baumann, and G. Grant, Effect of Friction Stir Processing on Fatigue Behavior of an Investment Cast Al-7Si-0.6Mg Alloy, Acta Mater., 2010, 58(3), p 989–1003

    CAS  Google Scholar 

  24. A. Rotella, Y. Nadot, M. Piellard, R. Augustin, and M. Fleuriot, Fatigue Limit of a Cast Al-Si-Mg Alloy (A357-T6) with Natural Casting Shrinkages Using ASTM Standard X-Ray Inspection, Int. J. Fatigue, 2018, 114, p 177–188

    CAS  Google Scholar 

  25. J. Zhang, W. Li, H. Wang, Q. Song, L. Lu, W. Wang, and Z. Liu, A Comparison of the Effects of Traditional Shot Peening and Micro-shot Peening on the Scuffing Resistance of Carburized and Quenched Gear Steel, Wear, 2016, 368, p 253–257

    Google Scholar 

  26. J.W. Zhang, L.T. Lu, K. Shiozawa, X.L. Shen, H.F. Yi, and W.H. Zhang, Analysis on Fatigue Property of Microshot Peened Railway Axle Steel, Mater. Sci. Eng. A, 2011, 528(3), p 1615–1622

    Google Scholar 

  27. J.C. Kim, S.K. Cheong, and H. Noguchi, Evolution of Residual Stress Redistribution Associated with Localized Surface Microcracking in Shot-Peened Medium-Carbon Steel during Fatigue Test, Int. J. Fatigue, 2013, 55, p 147–157

    CAS  Google Scholar 

  28. B. Skallerud, T. Iveland, and G. Härkegård, Fatigue Life Assessment of Aluminum Alloys with Casting Defects, Eng. Fract. Mech., 1993, 44(6), p 857–874

    Google Scholar 

  29. S. Barter, L. Molent, N. Goldsmith, and R. Jones, An Experimental Evaluation of Fatigue Crack Growth, Eng. Fail. Anal., 2005, 12(1), p 99–128

    Google Scholar 

  30. Q.G. Wang, P.N. Crepeau, C.J. Davidson, and J.R. Griffiths, Oxide Films, Pores and the Fatigue Lives of Cast Aluminum Alloys, Metall. Mater. Trans. B, 2006, 37(6), p 887–895

    Google Scholar 

  31. B.R. Crawford, C. Loader, A.R. Ward, C. Urbani, M.R. Bache, S.H. Spence, and A.J. Stonham, The EIFS Distribution for Anodized and Pre-corroded 7010–T7651 under Constant Amplitude Loading, Fatigue Fract. Eng. Mater. Struct., 2005, 28(9), p 795–808

    CAS  Google Scholar 

  32. Y.K. Gao and X.R. Wu, Experimental Investigation and Fatigue Life PREDICTION for 7475-t7351 Aluminum Alloy With and Without Shot Peening-Induced Residual Stresses, Acta Mater., 2011, 59(9), p 3737–3747

    CAS  Google Scholar 

  33. A.J. McEvily, Current Aspects of Fatigue, Met. Sci., 1977, 11(8–9), p 274–284

    CAS  Google Scholar 

  34. H.U. Staal and J.D. Elen, Crack Closure and Influence of Cycle Ratio R on Fatigue Crack Growth in Type 304 Stainless Steel at Room Temperature, Eng. Fract. Mech., 1979, 11(2), p 275–283

    CAS  Google Scholar 

  35. V. Bachmann and D. Munz, Fatigue Crack Closure Evaluation with the Potential Method, Eng. Fract. Mech., 1979, 11(1), p 61–71

    CAS  Google Scholar 

  36. Y. Murakami, and M. Endo, Effects of Hardness and Crack Geometries on μ/Cth of Small Cracks Emanating from Small Defects, 1986

  37. Y. Murakami, Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, vol. 70(7), Elsevier, London, 2002, p 1197–1200

  38. Y. Murakami and E. Masahiro, Quantitative Evaluation of Fatigue Strength of Metals Containing Various Small Defects or Cracks, Eng. Fract. Mech., 1983, 17(1), p 1–15

    Google Scholar 

  39. Y. Murakami, T. Toriyama, and E.M. Coudert, Instructions for a New Method of Inclusion Rating and Correlations with the Fatigue Limit, J. Test. Eval., 1994, 22(4), p 318–326

    CAS  Google Scholar 

  40. S. Beretta and Y. Murakami, Statistical Analysis of Defects for Fatigue Strength Prediction and Quality Control of Materials, Fatigue Fract. Eng. Mater. Struct., 1998, 21(9), p 1049–1065

    CAS  Google Scholar 

  41. H. Mayer, M. Papakyriacou, B. Zettl, and S.E. Stanzl-Tschegg, Influence of Porosity on the Fatigue Limit of Die Cast Magnesium and Aluminium Alloys, Int. J. Fatigue, 2003, 25(3), p 245–256

    CAS  Google Scholar 

  42. H. Mayer, M. Papakyriacou, B. Zettl, and S. Vacic, Endurance Limit and Threshold Stress Intensity of Die Cast Magnesium and Aluminium Alloys at Elevated Temperatures, Int. J. Fatigue, 2005, 27(9), p 1076–1088

    CAS  Google Scholar 

  43. P. White, L. Molent, and S. Barter, Interpreting Fatigue Test Results Using a Probabilistic Fracture Approach, Int. J. Fatigue, 2005, 27(7), p 752–767

    Google Scholar 

  44. M. Tiryakioğlu, Statistical Distributions for the Size of Fatigue-Initiating Defects in Al-7%Si-0.3%Mg Alloy Castings: A Comparative Study, Mater. Sci. Eng. A, 2008, 497(1-2), p 119–125

    Google Scholar 

  45. S.S. Manson, Behavior of Materials under Conditions of Thermal Stress, vol. 2933, 1953, National Advisory Committee for Aeronautics

  46. L.F. Coffin, Jr., A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal, Trans. Am. Soc. Mech. Eng. N. Y., 1954, 76, p 931–950

    CAS  Google Scholar 

  47. J. Morrow, Fatigue Design Handbook, Adv. Eng., 1968, 4, p 21–29

    Google Scholar 

  48. M.Z. Wu, J.W. Zhang, Y.B. Zhang et al., Effects of Mg Content on the Fatigue Strength and Fracture Behavior of Al-Si-Mg Casting Alloys. J. Mater. Eng. Perform., 2018

  49. M.T.A. El-Khair, Microstructure Characterization and Tensile Properties of Squeeze-Cast AlSiMg ALLOYS, Mater. Lett., 2005, 59(8/9), p 894–900

    Google Scholar 

  50. ASM International. Handbook Committee. ASM Handbook, vol. 19. ASM international, 1990

  51. SAE Standard, J443—Procedures for Using Standard Shot Peening Test Strip, 2003

  52. SAE international, Shot Peening Coverage Determination, SAE J2277, 2013

  53. J. Lin, N. Ma, Y. Lei, and H. Murakawa, Measurement of Residual Stress in Arc Welded Lap Joints by cosα X-Ray Diffraction Method, J. Mater. Process. Technol., 2017, 243, p 387–394

    CAS  Google Scholar 

  54. M.G. Moore and W.P. Evans, Mathematical Correction for Stress in Removed Layers in X-Ray Diffraction Residual Stress Analysis (No. 580035). SAE Technical Paper, 1958

  55. Y.L. Lee, J. Pan, R.B. Hathaway, and M. Barkey, Fatigue Testing and Analysis: Theory and Practice, Elsevier, Butterworth-Heinemann, 2005

    Google Scholar 

  56. A. Khalili and K. Kromp, Statistical Properties of Weibull Estimators, J. Mater. Sci., 1991, 26(24), p 6741–6752

    Google Scholar 

  57. J.Z. Yi, P.D. Lee, T.C. Lindley, and T. Fukui, Statistical Modeling of Microstructure and Defect Population Effects on the Fatigue Performance of Cast A356-T6 Automotive Components, Mater. Sci. Eng. A, 2006, 432(1–2), p 59–68

    Google Scholar 

  58. M.A. Meggiolaro and J.T.P. Castro, Statistical Evaluation of Strain-Life Fatigue Crack Initiation Predictions, Int. J. Fatigue, 2004, 26(5), p 463–476

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 51675445, U1534209) and Independent Research Project of State Key Laboratory of Traction Power (No. 2019TPL-T06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, K., Zhang, J., Li, H. et al. Analysis on the Fatigue Properties of Shot-Peened Al-Si-Mg Alloy and Its Fatigue Life Prediction. J. of Materi Eng and Perform 29, 5114–5125 (2020). https://doi.org/10.1007/s11665-020-05001-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05001-7

Keywords

Navigation