Skip to main content

Fatigue and Corrosion Behavior of Solid-State Recycled Aluminum Alloy EN AW 6082

Abstract

In this research, a solid-state recycling process of aluminum was performed. It consisted of aluminum EN AW 6082 alloy machining chip cold precompaction and hot extrusion followed by a combination of equal channel angular pressing (ECAP) and heat treatment. The main aim of this paper is to determine the fatigue and corrosion behavior of the recycled specimens. In order to determine the recycled specimen fracture mode after fatigue testing, fractography analysis was performed. The corrosion behavior of all specimens was investigated in 0.5 M NaCl solution using open circuit potential measurements, polarization and electrochemical impedance spectroscopy (EIS) methods. It was found that the corrosion resistance of the tested specimens is similar for reference and as-extruded recycled specimens, while it is increased for those which were additionally processed with equal channel angular pressing and heat treatment. Namely, the corrosion current decreased in the same order, while the polarization resistance increased. Impedance measurements have shown that the subsequent plastic deformation and heat treatment of recycled specimens facilitated passivation of tested materials and improved surface film properties, which is confirmed with scanning electron microscopy and energy-dispersive x-ray spectroscopy. Fatigue life was similar for recycled and reference specimens for the selected stress levels. However, fractography showed that multiple cracks appeared inside the recycled specimens which caused different crack propagation mechanisms compared with reference specimens.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. M. Stacey, Aluminium Recyclability and Recycling, Cwningen Press, Towards Sustainable Cities, 2015

    Google Scholar 

  2. L. Bushi, EDAG Silverado Body Lightweighting Final LCA Report, Aluminum Association, 2015, https://www.drivealuminum.org/research-resources/lca-report-edag-silverado-body-lightweighting-august-2018/, Accessed 10 Sept 2019

  3. European Aluminium, 2015 Sustainability Highlights, Reporting on the European aluminium industry’s performance, European Aluminium, 2017, https://www.european-aluminium.eu/media/1836/20170323-sustainability-performance-report.pdf, Accessed 10 Sept 2019

  4. J.R. Duflou, A.E. Tekkaya, M. Haase, T. Welo, K. Vanmeensel, K. Kellens, W. Dewulf, and D. Paraskevas, Environmental Assessment of Solid State Recycling Routes for Aluminium Alloys: Can Solid State Processes Significantly Reduce the Environmental Impact of Aluminium Recycling?, CIRP Ann. Manuf. Technol., 2015, 64(1), p 37–40. https://doi.org/10.1016/j.cirp.2015.04.051

    Article  Google Scholar 

  5. S. Shamsudin, M.A. Lajis, and Z.W. Zhong, Solid-State Recycling of Light Metals: A Review, Adv. Mech. Eng., 2016, 8(8), p 1–23. https://doi.org/10.1177/1687814016661921

    Article  CAS  Google Scholar 

  6. B. Wan, W. Chen, T. Lu, F. Liu, Z. Jiang, and M. Mao, Review of Solid State Recycling of Aluminum Chips, Resour. Conserv. Recycl., 2017, 125, p 37–47. https://doi.org/10.1016/j.resconrec.2017.06.004

    Article  Google Scholar 

  7. A.E. Tekkaya, M. Schikorra, D. Becker, D. Biermann, N. Hammer, and K. Pantke, Hot Profile Extrusion of AA-6060 Aluminum Chips, J. Mater. Process. Technol., 2009, 209(7), p 3343–3350. https://doi.org/10.1016/j.jmatprotec.2008.07.047

    Article  CAS  Google Scholar 

  8. V. Güley, A. Güzel, A. Jäger, N. Ben Khalifa, A.E. Tekkaya, and W.Z. Misiolek, Effect of Die Design on the Welding Quality During Solid State Recycling of AA6060 Chips by Hot Extrusion, Mater. Sci. Eng. A, 2015, 574, p 163–175. https://doi.org/10.1016/j.msea.2013.03.010

    Article  CAS  Google Scholar 

  9. J. Gronostajski and A. Matuszak, The Recycling of Metals by Plastic Deformation: An Example of Recycling of Aluminium and Its Alloys Chips, J. Mater. Process. Technol., 1999, 92–93, p 35–41. https://doi.org/10.1016/s0924-0136(99)00166-1

    Article  Google Scholar 

  10. D. Baffari, A.P. Reynolds, A. Masnata, L. Fratini, and G. Ingarao, Friction Stir Extrusion to Recycle Aluminum Alloys Scraps: Energy Efficiency Characterization, J. Manuf. Process., 2019, 43, p 63–69. https://doi.org/10.1016/j.jmapro.2019.03.049

    Article  Google Scholar 

  11. W. Tang and A.P. Reynolds, Production of Wire via Friction Extrusion of Aluminum Alloy Machining Chips, J. Mater. Process. Technol., 2010, 210, p 2231–2237. https://doi.org/10.1016/j.jmatprotec.2010.08.010

    Article  CAS  Google Scholar 

  12. J. Cui, J.C. Werenskoild, and H.J. Roven, New Approaches for Recycling of Aluminum Scraps, Proceedings of the International Symposium on Liquid Metal Processing and Casting, September 20-23, 2009 (Santa Fe, New Mexico), The Minerals, Metals & Materials Society, p 389–396

  13. E.W. Lui, S. Palanisamy, M.S. Dargusch, and K. Xia, Effects of Chip Conditions on the Solid State Recycling of Ti-6Al-4V Machining Chips, J. Mater. Process. Technol., 2016, 238, p 297–304. https://doi.org/10.1016/j.jmatprotec.2016.07.028

    Article  CAS  Google Scholar 

  14. I.A.E.A. Mohamed, Y.Y. Eun, and S.K. Hyoung, Recycling of AlSi8Cu3 Alloy Chips via High Pressure Torsion, Mater. Sci. Eng. A, 2013, 560, p 121–128. https://doi.org/10.1016/j.msea.2012.09.045

    Article  CAS  Google Scholar 

  15. D.R. Cooper and J.M. Allwood, The Influence of Deformation Conditions in Solid-State Aluminium Welding Processes on the Resulting Weld Strength, J. Mater. Process. Technol., 2014, 214(11), p 2576–2592. https://doi.org/10.1016/j.jmatprotec.2014.04.018

    Article  CAS  Google Scholar 

  16. F. Kolpak, A. Schulze, C. Dahnke, and A.E. Tekkaya, Predicting Weld-Quality in Direct Hot Extrusion of Aluminium Chips, J. Mater. Process. Technol., 2019, 274, p 116294. https://doi.org/10.1016/j.jmatprotec.2019.116294

    Article  CAS  Google Scholar 

  17. M. Hasse, N. Ben Khalifa, A.E. Tekkaya, and W.Z. Misiolek, Improving Mechanical Properties of Chip-Based Aluminum Extrudates by Integrated Extrusion and Equal Channel Angular Pressing (iECAP), Mater. Sci. Eng. A, 2012, 539, p 194–204. https://doi.org/10.1016/j.msea.2012.01.081

    Article  CAS  Google Scholar 

  18. J. Krolo, B. Lela, Z. Švagelj, and S. Jozić, Adaptive Neuro-Fuzzy and Regression Models for Predicting Microhardness and Electrical Conductivity of Solid-State Recycled EN AW 6082, Int. J. Adv. Manuf. Tech., 2019, 100, p 2981–2993. https://doi.org/10.1007/s00170-018-2893-x

    Article  Google Scholar 

  19. T. Ying, M. Zheng, X. Hu, and K. Wu, Recycling of AZ91 Mg Alloy Through Consolidation of Machined Chips by Extrusion and ECAP, Trans. Nonferrous Met. Soc. China, 2010, 20, p 604–607. https://doi.org/10.1016/S1003-6326(10)60547-X

    Article  Google Scholar 

  20. J. Krolo, B. Lela, I. Dumanić, and F. Kozina, Statistical Analysis of the Combined ECAP and Heat Treatment for Recycling Aluminum Chips Without Remelting, Metals, 2019, 9(6), p 660. https://doi.org/10.3390/met9060660

    Article  CAS  Google Scholar 

  21. Y. Chino, T. Furuta, M. Hakamada, and M. Mabuchi, Fatigue Behavior of AZ31 Magnesium Alloy Produced by Solid-State Recycling, J. Mater. Sci., 2006, 41(11), p 3229–3232. https://doi.org/10.1007/s10853-005-5556-x

    Article  CAS  Google Scholar 

  22. A. Koch, P. Wittke, and F. Walther, Computed Tomography-Based Characterization of the Fatigue Behavior and Damage Development of Extruded Profiles Made from Recycled AW6060 Aluminum Chips, Materials, 2019, 12(15), p 2372. https://doi.org/10.3390/ma12152372

    Article  CAS  Google Scholar 

  23. Y. Chino, M. Mabuchi, S. Otsuka, K. Shimojima, H. Hosokawa, Y. Yamada, and H. Iwasaki, Corrosion and Mechanical Properties of Recycled 5083 Aluminum Alloy by Solid State Recycling, Mater. Trans., 2003, 44(7), p 1284–1289. https://doi.org/10.2320/matertrans.44.1284

    Article  CAS  Google Scholar 

  24. M.A. Taha, A.T. Abbas, F. Benyahia, H.F. Alharbi, B. Guitián, and X.R. Nóvoa, Enhanced corrosion resistance of recycled aluminum alloy 6061 chips using hot extrusion followed by ECAP, J. Chem., 2019, 2019, p 3658507. https://doi.org/10.1155/2019/3658507

    Article  CAS  Google Scholar 

  25. T. Pepelnjak, K. Kuzman, I. Kačmarčik, and M. Plančak, Recycling of AlMgSi1 Aluminium Chips by Cold Compression, Metallurgy, 2012, 51(4), p 509–512

    CAS  Google Scholar 

  26. V. Güley, N.B. Khalifa, and T.E. Tekkaya, The effect of extrusion ratio and material flow on the mechanical properties of aluminum profiles solid state recycled from 6060 aluminum alloy chips, Proceedings of the 14th International ESAFORM Conference on Material Forming, 27–29 April 2011 (Belfast, Northern Ireland), p 1609–1614, https://doi.org/10.1063/1.3589746

  27. R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater Sci., 2006, 51(7), p 881–981. https://doi.org/10.1016/j.pmatsci.2006.02.003

    Article  CAS  Google Scholar 

  28. V. Kerlins and A. Phillips, Modes of Fracture, Fractography, ASM Handbook, Vol 12, 9th ed., ASM International, 1987, p 12-71

  29. N.E. Nanninga, High cycle fatigue of AA6082 and AA6063 aluminum extrusions, Dissertation, Michigan Technological University, 2008, http://digitalcommons.mtu.edu/etds/18, Accessed 10 Sept 2019

  30. C. Laird, Fatigue Crack Propagation, STP 415, ASTM International, West Conshohocken, 1967

    Google Scholar 

  31. D. Jíša, P. Liškutín, T. Kruml, and J. Polák, Small fatigue crack growth in aluminium alloy EN-AW 6082/T6, Int. J. Fatigue, 2010, 32(12), p 1913–1920. https://doi.org/10.1016/j.ijfatigue.2010.06.003

    Article  CAS  Google Scholar 

  32. C.M.A. Brett, The Application of Electrochemical Impedance Techniques to Aluminium Corrosion in Acidic Chloride Solution, J. Appl. Electrochem., 1990, 20(6), p 1000–1003. https://doi.org/10.1007/bf01019579

    Article  CAS  Google Scholar 

  33. C.M.A. Brett, On the Electrochemical Behavior of Aluminium in Acidic Chloride Solution, Corros. Sci., 1992, 33(2), p 203–210. https://doi.org/10.1016/0010-938x(92)90145-s

    Article  CAS  Google Scholar 

  34. J.B. Bessone, D.R. Salinas, C.E. Mayer, M. Ebert, and W.J. Lorenz, An EIS Study of Aluminium Barrier-Type Oxide Films Formed in Different Media, Electrochim. Acta, 1992, 37(12), p 2283–2290. https://doi.org/10.1016/0013-4686(92)85124-4

    Article  CAS  Google Scholar 

  35. S. Gudić, J. Radošević, and M. Kliškić, Impedance and Transient Study of Aluminium Barrier-Type Oxide Films, J. Appl. Electrochem., 1996, 26(10), p 1027–1035. https://doi.org/10.1007/bf00242197

    Article  Google Scholar 

  36. H.J. De Wit, C. Wijenberg, and C. Crevecoeur, Impedance Measurements During Anodization of Aluminum, J. Electrochem. Soc., 1979, 126(5), p 779. https://doi.org/10.1149/1.2129138

    Article  Google Scholar 

  37. H.J.W. Lenderink, M.V.D. Linden, and J.H.W. De Wit, Corrosion of Aluminium in Acidic and Neutral Solutions, Electrochim. Acta, 1993, 38(14), p 1989–1992. https://doi.org/10.1016/0013-4686(93)80329-x

    Article  CAS  Google Scholar 

  38. A. Frichet, P. Gimenez, and M. Keddam, An Impedance Investigation of Thin Oxide Layers on Pure Aluminum and of Their Water Content, Electrochim. Acta, 1993, 38(14), p 1957–1960. https://doi.org/10.1016/0013-4686(93)80322-q

    Article  CAS  Google Scholar 

  39. D.D. Raistrick, J.R. Macdonald, and D.R. Franceschetti, Theory, Impedance Spectroscopy, J.R. Macdonald, Ed., Wiley, New York, 1987,

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jure Krolo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krolo, J., Gudić, S., Vrsalović, L. et al. Fatigue and Corrosion Behavior of Solid-State Recycled Aluminum Alloy EN AW 6082. J. of Materi Eng and Perform 29, 4310–4321 (2020). https://doi.org/10.1007/s11665-020-04975-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04975-8

Keywords

  • aluminum
  • corrosion
  • ECAP
  • EIS
  • EN AW 6082
  • fatigue
  • polarization
  • solid-state recycling